题目

P5346 【XR-1】柯南家族

做法

聪明性是具有传递性的,且排列是固定的

那么先预处理出每个点的名次,用主席树维护\(k\)大值

一眼平衡树,遍历的同时插入\(O(log^2n)\),总时间复杂度\(O(nlog^2n)\)

显然还需要优化,考虑两个点的比较:按深度递减比较值,如果在等长前提下值相等,则比较深度最浅且的不一样的祖先的大小

这和后缀比较大小相似,我们后缀数组来实现排列的这个过程

Code

#include<bits/stdc++.h>
typedef int LL;
const LL maxn=1e6+9;
inline LL Read(){
LL x(0),f(1); char c=getchar();
while(c<'0' || c>'9'){
if(c=='-') f=-1; c=getchar();
}
while(c>='0' && c<='9'){
x=(x<<3)+(x<<1)+c-'0'; c=getchar();
}return x*f;
}
struct node{
LL to,nxt;
}dis[maxn];
LL n,num,q,m,tim;
LL head[maxn],fa[maxn],a[maxn],sa[maxn],x[maxn],y[maxn],z[maxn],c[maxn],rk[maxn],inc[maxn][25],b[maxn],dfn[maxn],low[maxn];
inline void Add(LL u,LL v){
dis[++num]=(node){v,head[u]}; head[u]=num;
}
inline void Sort(){
for(LL i=1;i<=n;++i) ++c[x[i]=a[i]];
for(LL i=2;i<=m;++i) c[i]+=c[i-1];
for(LL i=n;i>=1;--i) sa[c[x[i]]--]=i;
for(LL i=1;i<=n;++i) rk[sa[i]]=i;
for(LL len=1,t=0;len<n;len<<=1,++t){
LL num(0);
for(LL i=1;i<=n;++i) z[i]=rk[inc[i][t]];
for(LL i=0;i<=n;++i) c[i]=0;
for(LL i=1;i<=n;++i) ++c[z[i]]; for(LL i=1;i<=n;++i) c[i]+=c[i-1];
for(LL i=n;i>=1;--i) y[c[z[sa[i]]]--]=sa[i]; for(LL i=0;i<=m;++i) c[i]=0;
for(LL i=1;i<=n;++i) ++c[x[i]]; for(LL i=1;i<=m;++i) c[i]+=c[i-1];
for(LL i=n;i>=1;--i) sa[c[x[y[i]]]--]=y[i];
for(LL i=1;i<=n;++i) rk[sa[i]]=i;
std::swap(x,y);
x[sa[1]]=num=1;
for(LL i=2;i<=n;++i)
x[sa[i]]=(y[sa[i]]==y[sa[i-1]] && y[inc[sa[i]][t]]==y[inc[sa[i-1]][t]])?num:++num;
if(num==n) break;
m=num;
}
}
struct Tree{
LL root[maxn],nod,size[maxn*10],son[maxn*10][2];
void Update(LL &now,LL pre,LL l,LL r,LL x){
now=++nod; size[now]=size[pre]+1;
if(l==r) return; LL mid(l+r>>1);
if(x<=mid){ Update(son[now][0],son[pre][0],l,mid,x); son[now][1]=son[pre][1]; }
else{ Update(son[now][1],son[pre][1],mid+1,r,x); son[now][0]=son[pre][0]; }
}
LL Query1(LL now,LL l,LL r,LL k){
if(l==r) return sa[l]; LL mid(l+r>>1);
LL ret(size[son[now][0]]);
return k<=ret?Query1(son[now][0],l,mid,k):Query1(son[now][1],mid+1,r,k-ret);
}
LL Query2(LL pre,LL now,LL l,LL r,LL k){
if(l==r) return sa[l]; LL mid(l+r>>1);
LL ret(size[son[now][0]]-size[son[pre][0]]);
return k<=ret?Query2(son[pre][0],son[now][0],l,mid,k):Query2(son[pre][1],son[now][1],mid+1,r,k-ret);
}
}T1,T2;
void Fir(LL u){
inc[u][0]=fa[u];
for(LL i=1;i<=20;++i){
inc[u][i]=inc[inc[u][i-1]][i-1]; if(!inc[u][i]) break;
}
for(LL i=head[u];i;i=dis[i].nxt) Fir(dis[i].to);
}
void Dfs(LL u){
dfn[u]=++tim;
T1.Update(T1.root[u],T1.root[fa[u]],1,n,rk[u]);
T2.Update(T2.root[tim],T2.root[tim-1],1,n,rk[u]);
for(LL i=head[u];i;i=dis[i].nxt) Dfs(dis[i].to);
low[u]=tim;
}
inline void Init(){
n=Read(); q=Read();
for(LL i=2;i<=n;++i) Add(fa[i]=Read(),i);
for(LL i=1;i<=n;++i) b[i]=a[i]=Read();
std::sort(b+1,b+1+n); m=std::unique(b+1,b+1+n)-b-1;
for(LL i=1;i<=n;++i) a[i]=std::lower_bound(b+1,b+1+m,a[i])-b;
}
int main(){
Init();
Fir(1);
Sort();
std::reverse(sa+1,sa+1+n);
for(LL i=1;i<=n;++i) rk[sa[i]]=i;
Dfs(1);
while(q--){
LL op(Read()),x(Read());
if(op==1) printf("%d\n",rk[x]);
else{
LL k(Read());
if(op==2) printf("%d\n",T1.Query1(T1.root[x],1,n,k));
else printf("%d\n",T2.Query2(T2.root[dfn[x]-1],T2.root[low[x]],1,n,k));
}
}
return 0;
}

P5346 【XR-1】柯南家族(后缀数组+主席树)的更多相关文章

  1. BZOJ3473:字符串(后缀数组,主席树,二分,ST表)

    Description 给定n个字符串,询问每个字符串有多少子串(不包括空串)是所有n个字符串中至少k个字符串的子串? Input 第一行两个整数n,k. 接下来n行每行一个字符串. Output 一 ...

  2. [BZOJ4556][Tjoi2016&Heoi2016]字符串 后缀数组+主席树

    4556: [Tjoi2016&Heoi2016]字符串 Time Limit: 20 Sec  Memory Limit: 128 MB Description 佳媛姐姐过生日的时候,她的小 ...

  3. LOJ_#2720. 「NOI2018」你的名字 _后缀数组+主席树+倍增

    题面: https://loj.ac/problem/2720 考虑枚举T串的每个后缀i,我们要做两件事. 一.统计有多少子串[i,j]在S中要求位置出现. 二.去重. 第二步好做,相当于在后缀数组上 ...

  4. BZOJ 5496: [2019省队联测]字符串问题 (后缀数组+主席树优化建图+拓扑排序)

    题意 略 分析 考场上写了暴力建图40分溜了-(结果只得了30分) 然后只要优化建边就行了 首先给出的支配关系无法优化,就直接A向它支配的B连边. 考虑B向以B作为前缀的所有A连边,做一遍后缀数组,两 ...

  5. HDU - 6704 K-th occurrence (后缀数组+主席树/后缀自动机+线段树合并+倍增)

    题意:给你一个长度为n的字符串和m组询问,每组询问给出l,r,k,求s[l,r]的第k次出现的左端点. 解法一: 求出后缀数组,按照排名建主席树,对于每组询问二分或倍增找出主席树上所对应的的左右端点, ...

  6. [2019CCPC网络赛][hdu6704]K-th occurrence(后缀数组&&主席树)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6704 题意为查询子串s[l...r]第k次出现的位置. 写完博客后5分钟的更新 写完博客才发现这份代码 ...

  7. [HEOI2016] 字符串 - 后缀数组,主席树,ST表,二分

    [HEOI2016] 字符串 Description 给定一个字符串 \(S\), 有 \(m\) 个询问,每个询问给定参数 \((a,b,c,d)\) ,求 \(s[a..b]\) 的子串与 \(s ...

  8. HDU-6704 K-th occurrence(后缀数组+主席树)

    题意 给一个长度为n的字符串,Q次询问,每次询问\((l,r,k)\) , 回答子串\(s_ls_{l+1}\cdots s_r\) 第\(k\) 次出现的位置,若不存在输出-1.\(n\le 1e5 ...

  9. BZOJ4556:[TJOI\HEOI2016]字符串(后缀数组,主席树,二分,ST表)

    Description 佳媛姐姐过生日的时候,她的小伙伴从某东上买了一个生日礼物.生日礼物放在一个神奇的箱子中.箱子外边写了一个长为n的字符串s,和m个问题.佳媛姐姐必须正确回答这m个问题,才能打开箱 ...

随机推荐

  1. 图片上传怎么用File接受文件

    xl_echo编辑整理,欢迎转载,转载请声明文章来源.欢迎添加echo微信(微信号:t2421499075)交流学习. 百战不败,依不自称常胜,百败不颓,依能奋力前行.——这才是真正的堪称强大!! - ...

  2. mybatis - 问题记录

    记录使用 mybatis 过程中遇到的一些报错,及原因以及解决方法. 1. 报错: Could not find parameter map com.lx.mapper.HotelMapper.map ...

  3. QuickJS 快速入门 (QuickJS QuickStart)

    1. QuickJS 快速入门 (QuickJS QuickStart) 1. QuickJS 快速入门 (QuickJS QuickStart) 1.1. 简介 1.2. 安装 1.3. 简单使用 ...

  4. 自定义过滤器和标签 & 静态文件相关

    自定义过滤器和标签 1.在settings中的INSTALLED_APPS配置当前app,不然django无法找到自定义的simple_tag. 2.在app中创建templatetags模块(模块名 ...

  5. python 复制列表

    python的变量仅仅是指向对象的标签,所以在操作列表的时候,list1 = list2这种做法只会复制一个标签,然后指向对象,并非生成一个新的对象. 大致有5中方法可以复制列表: a = [1,2, ...

  6. REST,以及RESTful的讲解

    详见:https://blog.csdn.net/qq_21383435/article/details/80032375 1.传统下的API接口对比规则概念REST 系统的特征演化优点&缺点 ...

  7. 七年总结常用 Git 命令清单

    我每天使用 Git ,但是很多命令记不住. 一般来说,日常使用只要记住下图6个命令,就可以了.但是熟练使用,恐怕要记住60-100个命令. 下面是我整理的常用 Git 命令清单.几个专用名词的译名如下 ...

  8. JetBrains 系列开发工具 汉化(中文化)教程

    项目地址:(* ̄3 ̄)╭ 操作流程: 拷贝内容 将下载的包改名为resources_cn.jar,拷贝到 $IDEA_HOME$/lib/ 目录下 重启IDEA 打开或者重新启动IDEA

  9. Java--8--新特性--Stream API

    Stream API 提供了一种高效且易于使用的处理数据的方式,(java.util.stream.*) 他可以对数组,集合等做一些操作,最终产生一个新的流,原数据是不会发生改变的. “集合”讲的是数 ...

  10. 15 Windows编程——系统内置窗口子类型之button

    button子类型BS_3STATE.BS_AUTO3STATE.BS_AUTOCHECKBOX 源码 #include<Windows.h> #include<Windowsx.h ...