【BZOJ3992】[SDOI2015]序列统计

Description

小C有一个集合S,里面的元素都是小于M的非负整数。他用程序编写了一个数列生成器,可以生成一个长度为N的数列,数列中的每个数都属于集合S。
小C用这个生成器生成了许多这样的数列。但是小C有一个问题需要你的帮助:给定整数x,求所有可以生成出的,且满足数列中所有数的乘积mod M的值等于x的不同的数列的有多少个。小C认为,两个数列{Ai}和{Bi}不同,当且仅当至少存在一个整数i,满足Ai≠Bi。另外,小C认为这个问题的答案可能很大,因此他只需要你帮助他求出答案mod 1004535809的值就可以了。

Input

一行,四个整数,N、M、x、|S|,其中|S|为集合S中元素个数。第二行,|S|个整数,表示集合S中的所有元素。

Output

一行,一个整数,表示你求出的种类数mod 1004535809的值。

Sample Input

4 3 1 2
1 2

Sample Output

8

HINT

【样例说明】
可以生成的满足要求的不同的数列有(1,1,1,1)、(1,1,2,2)、(1,2,1,2)、(1,2,2,1)、(2,1,1,2)、(2,1,2,1)、(2,2,1,1)、(2,2,2,2)。
【数据规模和约定】
对于10%的数据,1<=N<=1000;
对于30%的数据,3<=M<=100;
对于60%的数据,3<=M<=800;
对于全部的数据,1<=N<=109,3<=M<=8000,M为质数,1<=x<=M-1,输入数据保证集合S中元素不重复

题解:如果你早已深入理解生成函数,可以无视下面这段话:

“未学生成函数的时候,以为这种题就是将两个桶相乘,得到一个新的桶,桶里装的是方案数。了解生成函数后,发现就是讲桶中的每一位都看成多项式中的一个系数,然后用多项式的运算法则来优化运算的过程,最后的答案依旧是其中的一位系数。如果像我一样对生成函数了解较少的话,可以先考虑DP,用DP方程将式子列出来,然后将整个DP数组看成一个大多项式,继续推下去就好。”

如果你早已深入理解NTT,可以无视下面这段话:

“NTT与FFT的区别是:FFT利用的是e的特性,将系数表达式与点值表达式进行快速的转换,而在NTT中,模数的原根正好有同样的性质,并且常见的就是998244353的一个原根=3。于是,只需要将单位复数根变成3的幂次,除法改成逆元,其余都一样了。”

如果你早已理解原根与指标,可以无视下面这段话:

“如果x^0,x^1,...x^n-1在mod n意义下正好覆盖了0-n-1中的所有数,则x是n的一个原根,他的意义可以看成是模意义下的e。而指标的意义,可以看成是模意义下的取ln。这两个东西在本题中的意义就是将乘法转变成加法。
“原根的求法:暴力枚举x,如果x对于$\varphi(p)$的所有质因子pi,都有$x^{\varphi(p) \over pi} \neq 1$,则x是p的原根。
“指标的求法:如果原根是r,则r^x的指标即为x。"

回到本题,我们将原数组求指标后,将得到的多项式^n即可,可以用多项式的快速幂实现。

#include <cstdio>
#include <cstring>
#include <iostream>
using namespace std;
typedef long long ll;
const ll P=1004535809ll;
const ll G=3;
const int maxn=100010;
int n,m,X,S,root,num,len;
ll pri[maxn],A[maxn],B[maxn];
ll s[maxn],ind[maxn];
inline int rd()
{
int ret=0,f=1; char gc=getchar();
while(gc<'0'||gc>'9') {if(gc=='-')f=-f; gc=getchar();}
while(gc>='0'&&gc<='9') ret=ret*10+gc-'0',gc=getchar();
return ret*f;
}
ll pm(ll x,ll y,ll z)
{
ll ret=1;
while(y)
{
if(y&1) ret=ret*x%z;
x=x*x%z,y>>=1;
}
return ret;
}
void get_factor(ll x)
{
for(ll i=2;i*i<=x;i++)
{
if(x%i==0)
{
pri[++num]=i;
while(x%i==0) x/=i;
}
}
if(x!=1) pri[++num]=x;
}
bool check(ll x)
{
for(int i=1;i<=num;i++) if(pm(x,(m-1)/pri[i],m)==1) return 0;
return 1;
}
ll get_root(ll x)
{
ll tmp=x-1;
get_factor(tmp);
for(ll i=2;i<=tmp;i++) if(check(i)) return i;
return 0;
}
void NTT(ll *a,int f)
{
int i,j,k,h;
ll t;
for(i=k=0;i<len;i++)
{
if(i>k) swap(a[i],a[k]);
for(j=len>>1;(k^=j)<j;j>>=1);
}
for(h=2;h<=len;h<<=1)
{
ll wn=pm(G,f==1?(P-1)/h:P-1-(P-1)/h,P);
for(j=0;j<len;j+=h)
{
ll w=1;
for(k=j;k<j+h/2;k++) t=w*a[k+h/2]%P,a[k+h/2]=(a[k]-t+P)%P,a[k]=(a[k]+t)%P,w=w*wn%P;
}
}
if(f==-1)
{
t=pm(len,P-2,P);
for(i=0;i<len;i++) a[i]=a[i]*t%P;
}
}
void POW(ll *b,ll y)
{
ll *a=B;
a[0]=1;
while(y)
{
NTT(b,1);
if(y&1)
{
NTT(a,1);
for(int i=0;i<len;i++) a[i]=a[i]*b[i]%P;
NTT(a,-1);
for(int i=len-1;i>=m-1;i--) a[i-m+1]=(a[i-m+1]+a[i])%P,a[i]=0;
}
for(int i=0;i<len;i++) b[i]=b[i]*b[i]%P;
NTT(b,-1);
for(int i=len-1;i>=m-1;i--) b[i-m+1]=(b[i-m+1]+b[i])%P,b[i]=0;
y>>=1;
}
}
int main()
{
n=rd(),m=rd(),X=rd(),S=rd();
int i;
for(i=1;i<=S;i++) s[i]=rd();
root=get_root(m);
ll tmp=1;
for(i=0;i<m-1;i++) ind[tmp]=i,tmp=tmp*root%m;
for(len=1;len<=m+m;len<<=1);
for(i=1;i<=S;i++) if(s[i]) A[ind[s[i]]]=1;
POW(A,n);
printf("%lld\n",B[ind[X]]);
return 0;
}

【BZOJ3992】[SDOI2015]序列统计 NTT+多项式快速幂的更多相关文章

  1. bzoj 3992 [SDOI2015] 序列统计 —— NTT (循环卷积+快速幂)

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3992 (学习NTT:https://riteme.github.io/blog/2016-8 ...

  2. BZOJ3992: [SDOI2015]序列统计(NTT 原根 生成函数)

    题意 题目链接 给出大小为\(S\)的集合,从中选出\(N\)个数,满足他们的乘积\(\% M = X\)的方案数 Sol 神仙题Orz 首先不难列出最裸的dp方程,设\(f[i][j]\)表示选了\ ...

  3. LOJ 2183 / SDOI2015 序列统计 (DP+矩阵快速幂)

    题面 传送门 分析 考虑容斥原理,用总的方案数-不含质数的方案数 设\(dp1[i][j]\)表示前i个数,和取模p为j的方案数, \(dp2[i][j]\)表示前i个数,和取模p为j的方案数,且所有 ...

  4. 【BZOJ3992】【SDOI2015】序列统计 EGF+多项式快速幂+循环卷积

    如果是求$n$个数之和在模$m$意义下为$x$,那么做法是显然的. 但是这道题问的是$n$个数之积在模m意义下为$x$,那么做法就和上面的问题不同. 考虑如何把乘法转换成加法(求log): 题目中有一 ...

  5. BZOJ 3992: [SDOI2015]序列统计 NTT+快速幂

    3992: [SDOI2015]序列统计 Time Limit: 30 Sec  Memory Limit: 128 MBSubmit: 1155  Solved: 532[Submit][Statu ...

  6. [BZOJ3992][SDOI2015]序列统计(DP+原根+NTT)

    3992: [SDOI2015]序列统计 Time Limit: 30 Sec  Memory Limit: 128 MBSubmit: 1888  Solved: 898[Submit][Statu ...

  7. 【NTT】bzoj3992: [SDOI2015]序列统计

    板子题都差点不会了 Description 小C有一个集合S,里面的元素都是小于M的非负整数.他用程序编写了一个数列生成器,可以生成一个长度为N的数 列,数列中的每个数都属于集合S.小C用这个生成器生 ...

  8. [SDOI2015]序列统计(NTT+求原根)

    题目 [SDOI2015]序列统计 挺好的题!!! 做法 \(f[i][j]\)为第\(i\)个数前缀积在模\(M\)意义下为\(j\) 显然是可以快速幂的:\[f[2*i][j]=\sum\limi ...

  9. BZOJ3992: [SDOI2015]序列统计

    Description 小C有一个集合S,里面的元素都是小于M的非负整数.他用程序编写了一个数列生成器,可以生成一个长度为N的数列,数列中的每个数都属于集合S. 小C用这个生成器生成了许多这样的数列. ...

随机推荐

  1. 【原创】Javascript-获取URL请求参数

    function getUrlParam() { var param = [], hash; var url = window.location.href;//获取网页的url var hashes ...

  2. http重定向https

    server { listen 80; server_name localhost; return 301 https://$host$request_uri; } server { listen 4 ...

  3. Android OkHttp经验小结

    OkHttp应该是目前最完善,也是相当流行的一个底层网络请求库.Google都在用,所以有必要深入了解一下,刚好最近在重构公司项目的网络层,就顺便梳理一下.———–12.29————最近暂时没有时间详 ...

  4. C# 格式化 中文星期 显示

    最近有些小忙,直接贴代码吧, /// <summary> /// 获取系统的星期 /// </summary> /// <param name="dt" ...

  5. 11G在用EXP导出时,空表不能导出

    11G中有个新特性,当表无数据时,不分配segment,以节省空间 解决方法: 1.insert一行,再rollback就产生segment了. 该方法是在在空表中插入数据,再删除,则产生segmen ...

  6. Mapxtreme 在64位系统运行网站,提示未能加载文件或程序集,或它的某一个依赖项

    在32位系统上开发的网站,现在需要布署到64位系统上运行,布署好后访问提示提示未能加载文件或程序集,或它的某一个依赖项.在网上搜索后,发现是64位下引用dll出现的这个问题.这个问题通常出在引用第三方 ...

  7. Spark Streaming的样本demo统计

    废话不多说,直接上代码 package com.demo; import java.util.List; import java.util.regex.Pattern; import org.apac ...

  8. 2016.10.18kubernetes 的8080和6443端口的区别与联系

    由看过的资料知道,可以使用kubectl,client libraries和REST请求来访问api.   来自官方资料: By default the Kubernetes APIserver se ...

  9. IDEA破解 2017 IDEA license server 激活(可用)

    进入ide主页面,help-register-license server,然后输入 http://idea.iteblog.com/key.PHP(注意:php要小写)即可~

  10. Java enum枚举的使用方法

    一. 出现背景: 在JDK1.5之前,我们定义常量是这种:public static final String RED = "RED"; 在JDK1.5中增加了枚举类型,我们能够把 ...