拓扑序……好些玄妙

Description

Mr. F. wants to get a document be signed by a minister. A minister signs a document only if it is approved by his ministry. The ministry is an M-floor building with floors numbered from 1 to M, 1<=M<=100. Each floor has N rooms (1<=N<=500) also numbered from 1 to N. In each room there is one (and only one) official. 
A document is approved by the ministry only if it is signed by at least one official from the M-th floor. An official signs a document only if at least one of the following conditions is satisfied:

a. the official works on the 1st floor; 
b. the document is signed by the official working in the room with the same number but situated one floor below; 
c. the document is signed by an official working in a neighbouring room (rooms are neighbouring if they are situated on the same floor and their numbers differ by one).

Each official collects a fee for signing a document. The fee is a positive integer not exceeding 10^9. 
You should find the cheapest way to approve the document. 

Input

The first line of an input file contains two integers, separated by space. The first integer M represents the number of floors in the building, and the second integer N represents the number of rooms per floor. Each of the next M lines contains N integers separated with spaces that describe fees (the k-th integer at l-th line is the fee required by the official working in the k-th room at the l-th floor).

Output

You should print the numbers of rooms (one per line) in the order they should be visited to approve the document in the cheapest way. If there are more than one way leading to the cheapest cost you may print an any of them.

Sample Input

3 4
10 10 1 10
2 2 2 10
1 10 10 10

Sample Output

3
3
2
1
1

Hint

You can assume that for each official there always exists a way to get the approval of a document (from the 1st floor to this official inclusively) paying no more than 10^9. 
This problem has huge input data,use scanf() instead of cin to read data to avoid time limit exceed.

题目大意

有一个带权矩阵,可以从上面任意一点进入,从下面任意一点走出;问路径上权值和的最小值。

题目分析

题目很简单,就是普通的dp做两次……

只不过想记录一下这个dp拓扑序的问题。

对于点$(x,y)$需要先从上面转移,再从两边转移。虽然看上去随便怎么样好像都一样、会根据最优解覆盖,但是实际上是要考虑这个dp的拓扑序的……

=

 #pragma GCC optimize(2)
#include<cstring>
#include<cctype>
#include<cstdio>
const int maxn = ; int f[maxn][maxn],a[maxn][maxn];
int n,m,g[maxn][maxn],cnt; int read()
{
char ch = getchar();
int num = ;
bool fl = ;
for (; !isdigit(ch); ch = getchar())
if (ch=='-') fl = ;
for (; isdigit(ch); ch = getchar())
num = (num<<)+(num<<)+ch-;
if (fl) num = -num;
return num;
}
void dfs(int layer, int x)
{
if (layer!=&&!g[layer][x]) dfs(layer-, x);
else if (g[layer][x]) dfs(layer, x+g[layer][x]);
printf("%d\n",x);
}
int main()
{
register int i,j,tt = ;
n = read(), m = read();
for (i=; i<=n; i++)
for (j=; j<=m; j++)
a[i][j] = read(), f[i][j] = 2e9;
f[n][] = 2e9;
for (i=; i<=m; i++)
f[][i] = a[][i];
for (i=; i<=n; i++)
{
for (j=; j<=m; j++)
{
if (f[i][j] > f[i-][j]+a[i][j]){
f[i][j] = f[i-][j]+a[i][j];
g[i][j] = ;
}
if (j!=&&f[i][j] > f[i][j-]+a[i][j]){
f[i][j] = f[i][j-]+a[i][j];
g[i][j] = -;
}
}
for (j=m-; j>=; j--)
{
if (f[i][j] > f[i][j+]+a[i][j]){
f[i][j] = f[i][j+]+a[i][j];
g[i][j] = ;
}
}
}
for (i=; i<=m; i++)
if (f[n][tt] > f[n][i]) tt = i;
dfs(n, tt);
return ;
}

END

【动态规划】poj2353Ministry的更多相关文章

  1. 增强学习(三)----- MDP的动态规划解法

    上一篇我们已经说到了,增强学习的目的就是求解马尔可夫决策过程(MDP)的最优策略,使其在任意初始状态下,都能获得最大的Vπ值.(本文不考虑非马尔可夫环境和不完全可观测马尔可夫决策过程(POMDP)中的 ...

  2. 简单动态规划-LeetCode198

    题目:House Robber You are a professional robber planning to rob houses along a street. Each house has ...

  3. 动态规划 Dynamic Programming

    March 26, 2013 作者:Hawstein 出处:http://hawstein.com/posts/dp-novice-to-advanced.html 声明:本文采用以下协议进行授权: ...

  4. 动态规划之最长公共子序列(LCS)

    转自:http://segmentfault.com/blog/exploring/ LCS 问题描述 定义: 一个数列 S,如果分别是两个或多个已知数列的子序列,且是所有符合此条件序列中最长的,则 ...

  5. C#动态规划查找两个字符串最大子串

     //动态规划查找两个字符串最大子串         public static string lcs(string word1, string word2)         {            ...

  6. C#递归、动态规划计算斐波那契数列

    //递归         public static long recurFib(int num)         {             if (num < 2)              ...

  7. 动态规划求最长公共子序列(Longest Common Subsequence, LCS)

    1. 问题描述 子串应该比较好理解,至于什么是子序列,这里给出一个例子:有两个母串 cnblogs belong 比如序列bo, bg, lg在母串cnblogs与belong中都出现过并且出现顺序与 ...

  8. 【BZOJ1700】[Usaco2007 Jan]Problem Solving 解题 动态规划

    [BZOJ1700][Usaco2007 Jan]Problem Solving 解题 Description 过去的日子里,农夫John的牛没有任何题目. 可是现在他们有题目,有很多的题目. 精确地 ...

  9. POJ 1163 The Triangle(简单动态规划)

    http://poj.org/problem?id=1163 The Triangle Time Limit: 1000MS   Memory Limit: 10000K Total Submissi ...

随机推荐

  1. 搭建 CDH 版本hive

    搭建一个完整的cdh 的版本,由于涉及的产品和步骤太多,在客户那里部署环境时,很容易出现意外,所以如果只是需要部署一个测试环境来进行验证,我们没有必要完完整整的部署整个cdh.   下面是通过命令行的 ...

  2. Mybatis分页中遇到的坑3

    Mybatis Mapper.xml 配置文件中 resultMap 节点的源码解析   相关文章 Mybatis 解析配置文件的源码解析 Mybatis 类型转换源码分析 Mybatis 数据源和数 ...

  3. C 语言实例 - 字符串复制

    C 语言实例 - 字符串复制 C 语言实例 C 语言实例 将一个变量的字符串复制到另外一个变量中. 实例 - 使用 strcpy() #include <stdio.h> #include ...

  4. StringUtils.split()和string.split()的区别

    场景 出于业务考虑,将多个字符串拼接起来时,使用的分隔符是;,;.如果要将这样一个拼接来的字符串分割成原本的多个字符串时,就需要使用到jdk自带的split()方法.不过因为公司的编程规范,改为使用了 ...

  5. JSP | 基础 | 连接数据库

    package util; import java.sql.DriverManager; import java.sql.SQLException; import com.mysql.jdbc.*; ...

  6. POJ-1181-食物链

    链接:https://vjudge.net/problem/POJ-1182 题意: 动物王国中有三类动物A,B,C,这三类动物的食物链构成了有趣的环形.A吃B, B吃C,C吃A. 现有N个动物,以1 ...

  7. p标签中的文本换行

    参考文章 word-break:break-all和word-wrap:break-word的区别 CSS自动换行.强制不换行.强制断行.超出显示省略号 属性介绍 white-space: 如何处理元 ...

  8. python入门之三元运算,存址方式,深浅拷贝

    三元运算 格式: name = 值1 if 条件 else 值2 如果条件为True,那么将值1赋值给name,条件为False,那么将值2赋值给name 存址方式 不同的数据类型在内存中的存址方式不 ...

  9. 转 在shell脚本中使用expect实现scp传输问题

    1.安装expect expect用于shell脚本中自动交互,其是基于tcl编程语言的工具.所以安装expect首先安装tcl.本文中使用的是expect5.45和tcl8.6.6. 安装tcl [ ...

  10. freertos之资源管理学习

    OS下在对硬件外设资源操作.多任务的共享变量.任务和中断的共享变量操作时需要考虑资源的完整性和安全性. FREERTOS提供了临界区.调度器上锁.互斥量.优先级自动继承.创建守护任务的方法来改变最小优 ...