POJ:1751-Highways(Kruskal和Prim)
Highways
Time Limit: 1000MS Memory Limit: 10000K
Total Submissions: 6078 Accepted: 1650 Special Judge
Description
The island nation of Flatopia is perfectly flat. Unfortunately, Flatopia has a very poor system of public highways. The Flatopian government is aware of this problem and has already constructed a number of highways connecting some of the most important towns. However, there are still some towns that you can’t reach via a highway. It is necessary to build more highways so that it will be possible to drive between any pair of towns without leaving the highway system.
Flatopian towns are numbered from 1 to N and town i has a position given by the Cartesian coordinates (xi, yi). Each highway connects exaclty two towns. All highways (both the original ones and the ones that are to be built) follow straight lines, and thus their length is equal to Cartesian distance between towns. All highways can be used in both directions. Highways can freely cross each other, but a driver can only switch between highways at a town that is located at the end of both highways.
The Flatopian government wants to minimize the cost of building new highways. However, they want to guarantee that every town is highway-reachable from every other town. Since Flatopia is so flat, the cost of a highway is always proportional to its length. Thus, the least expensive highway system will be the one that minimizes the total highways length.
Input
The input consists of two parts. The first part describes all towns in the country, and the second part describes all of the highways that have already been built.
The first line of the input file contains a single integer N (1 <= N <= 750), representing the number of towns. The next N lines each contain two integers, xi and yi separated by a space. These values give the coordinates of ith town (for i from 1 to N). Coordinates will have an absolute value no greater than 10000. Every town has a unique location.
The next line contains a single integer M (0 <= M <= 1000), representing the number of existing highways. The next M lines each contain a pair of integers separated by a space. These two integers give a pair of town numbers which are already connected by a highway. Each pair of towns is connected by at most one highway.
Output
Write to the output a single line for each new highway that should be built in order to connect all towns with minimal possible total length of new highways. Each highway should be presented by printing town numbers that this highway connects, separated by a space.
If no new highways need to be built (all towns are already connected), then the output file should be created but it should be empty.
Sample Input
9
1 5
0 0
3 2
4 5
5 1
0 4
5 2
1 2
5 3
3
1 3
9 7
1 2
Sample Output
1 6
3 7
4 9
5 7
8 3
解题心得:
- 题目很简单,就是跑一个最小生成树,然后记录需要建立的新边。但是很坑啊,题目中说如果没有输出那么就会建立一个空白的文件,所以如果是写的多组输入,就会WA,不知道为啥,可能是没有建立空白的新文件吧。
- 然后就是邪最小生成树,两种写法
- Kruskal算法先得出每一条边,然后对边排序,从小的边开始选择,用并查集来判断是否形成了环。
- Prim算法是选择一个点,然后找出距离这个点最近的一个点,连成边,然后以找出的店为目标,再从没被连接的点中找出一个距离最近的点,连成边,然后一直将所有的点全部连接。
Kruskal算法代码:
#include<stdio.h>
#include<cstring>
#include<algorithm>
#include<iostream>
#include<vector>
using namespace std;
const int maxn = 1e3+100;
struct node
{
int x,y;
} p[maxn*maxn];
struct Path
{
int s,e,len;
} path[maxn*maxn];
int n,m,father[maxn*maxn],ans,t;
vector <pair<int,int> > ve;
bool cmp(Path a,Path b)
{
return a.len<b.len;
}
int find(int x)
{
if(father[x] == x)
return x;
return father[x] = find(father[x]);
}
void merge(int x,int y)
{
int fx = find(x);
int fy = find(y);
if(fx != fy)
father[fy] = fx;
}
int dis(int x,int y)
{
int d = (p[x].x - p[y].x)*(p[x].x - p[y].x) + (p[x].y - p[y].y)*(p[x].y - p[y].y);
return d;
}
void init()
{
ans = t = 0;
for(int i=1; i<=n; i++)
{
father[i] = i;
scanf("%d%d",&p[i].x,&p[i].y);
}
//枚举每一条边
for(int i=1; i<=n; i++)
for(int j=i+1; j<=n; j++)
{
path[t].s = i;
path[t].e = j;
path[t++].len = dis(i,j);
}
sort(path,path+t,cmp);//将边从小到大排序
cin>>m;
for(int i=0; i<m; i++)
{
int a,b;
scanf("%d%d",&a,&b);
if(find(a) != find(b))
merge(a,b);//将已经有路的点合并
}
}
void solve()
{
for(int i=0; i<t; i++)
{
int x = path[i].s;
int y = path[i].e;
int len = path[i].len;
if(find(x) != find(y))//如果不是同一个祖先那么连接就不会形成环
{
ans += len;
merge(x,y);
ve.push_back(make_pair(x,y));//记录需要连接的点
}
}
for(int i=0; i<ve.size(); i++)
{
pair<int,int> p;
p = ve[i];
printf("%d %d\n",p.first,p.second);
}
ve.clear();
}
int main()
{
cin>>n;
init();
solve();
return 0;
}
Prim算法代码
#include<stdio.h>
#include<cstring>
#include<iostream>
using namespace std;
const int maxn = 1000;
//lowcast记录的是各点距离已经生成了的树的距离
int maps[maxn][maxn],lowcost[maxn],n,m,Edge[maxn];
bool vis[maxn];//记录点是否已经在树中
struct NODE
{
int x,y;
}node[maxn];
int get_dis(int x,int y)
{
int dis = (node[x].x - node[y].x)*(node[x].x - node[y].x) + (node[x].y - node[y].y)*(node[x].y - node[y].y);
return dis;
}
void init()
{
cin>>n;
for(int i=1;i<=n;i++)
{
scanf("%d%d",&node[i].x,&node[i].y);
for(int j=1;j<i;j++)
maps[i][j] = maps[j][i] = get_dis(i,j);//记录两点之间的距离
maps[i][i] = 0x3f3f3f3f;//不可能自身到自身
}
memset(vis,0,sizeof(vis));//记录该点是否已经在树上
vis[1] = 1;
cin>>m;
while(m--)
{
int a,b;
scanf("%d%d",&a,&b);
maps[a][b] = maps[b][a] = 0;
}
for(int i=1;i<=n;i++)
{
lowcost[i] = maps[i][1];//先得到所有点距离第一个点的距离
Edge[i] = 1;
}
}
void Prim()
{
for(int i=1;i<n;i++)
{
int Min = 0x3f3f3f3f;
int point;
for(int j=1;j<=n;j++)//当前树距离最近的点
if(!vis[j] && Min > lowcost[j])
{
Min = lowcost[j];
point = j;
}
vis[point] = true;//将这个点加入树中
for(int k=1;k<=n;k++)
{
if(!vis[k] && lowcost[k] > maps[point][k])
{
Edge[k] = point;//记录添加边的两个点
lowcost[k] = maps[point][k];
}
}
if(maps[Edge[point]][point])
printf("%d %d\n",Edge[point],point);
}
}
int main()
{
init();
Prim();
return 0;
}
POJ:1751-Highways(Kruskal和Prim)的更多相关文章
- POJ 1751 Highways (kruskal)
题目链接:http://poj.org/problem?id=1751 题意是给你n个点的坐标,然后给你m对点是已经相连的,问你还需要连接哪几对点,使这个图为最小生成树. 这里用kruskal不会超时 ...
- POJ 1751 Highways(最小生成树&Prim)题解
思路: 一开始用Kruskal超时了,因为这是一个稠密图,边的数量最惨可能N^2,改用Prim. Prim是这样的,先选一个点(这里选1)作为集合A的起始元素,然后其他点为集合B的元素,我们要做的就是 ...
- POJ 1751 Highways (最小生成树)
Highways Time Limit:1000MS Memory Limit:10000KB 64bit IO Format:%I64d & %I64u Submit Sta ...
- POJ 1751 Highways 【最小生成树 Kruskal】
Highways Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 23070 Accepted: 6760 Speci ...
- POJ 1751 Highways(最小生成树Prim普里姆,输出边)
题目链接:点击打开链接 Description The island nation of Flatopia is perfectly flat. Unfortunately, Flatopia has ...
- POJ 1751 Highways (最小生成树)
Highways 题目链接: http://acm.hust.edu.cn/vjudge/contest/124434#problem/G Description The island nation ...
- POJ 1751 Highways (ZOJ 2048 ) MST
http://poj.org/problem?id=1751 http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=2048 题目大 ...
- (poj) 1751 Highways
Description The island nation of Flatopia is perfectly flat. Unfortunately, Flatopia has a very poor ...
- Highways POJ-1751 最小生成树 Prim算法
Highways POJ-1751 最小生成树 Prim算法 题意 有一个N个城市M条路的无向图,给你N个城市的坐标,然后现在该无向图已经有M条边了,问你还需要添加总长为多少的边能使得该无向图连通.输 ...
- 关于最小生成树 Kruskal 和 Prim 的简述(图论)
模版题为[poj 1287]Networking. 题意我就不说了,我就想简单讲一下Kruskal和Prim算法.卡Kruskal的题似乎几乎为0.(●-`o´-)ノ 假设有一个N个点的连通图,有M条 ...
随机推荐
- Prime Count 求大区间素数个数
http://acm.gdufe.edu.cn/Problem/read/id/1333 https://www.zhihu.com/question/29580448/answer/44874605
- Spark Mllib里如何将如温度、湿度和风速等数值特征字段用除以***进行标准化(图文详解)
不多说,直接上干货! 具体,见 Hadoop+Spark大数据巨量分析与机器学习整合开发实战的第18章 决策树回归分类Bike Sharing数据集
- Adobe CC Family (CC 2015) 大师版
Adobe CC Family (CC 2015) 大师版 v5.6#2 ###请彻底卸载旧版后再安装本版! 更新 Adobe Digital Publishing CC 2016.1更新 Adobe ...
- B. Game of the Rows
B. Game of the Rows time limit per test 1 second memory limit per test 256 megabytes input standard ...
- 通过Maven构建打包Spring boot,并将config配置文件提取到jar文件外
如果通过不同的IDE打包,着实会觉得依赖性太大,并且容易出现错误,操作也比较复杂 同时,spring-boot-maven-plugin的使用感觉,相关配置太少,并且无法满足方便部署和运行的需求. 这 ...
- Kendo MVVM 数据绑定(二) Checked
Kendo MVVM 数据绑定(二) Checked Checked 绑定用在 checkbox ()或 radio button ()上.注意: checked 绑定只适用于支持 checked 的 ...
- mkcert本地 HTTPS 加密证书生成工具
软件介绍: mkcert 是一个生成本地 HTTPS 加密证书的工具,一个命令就可以生成证书,不需要任何配置. 下载地址: https://github.com/FiloSottile/mkcert/ ...
- 对fgets末尾'\0'的处理
之所以要对fgets自动添加的字符进行处理的原因之一是:当你想比较输入的字符时,你会发现输入的字符和源码用来进行对比的字符一模一样,但是使用strcmp比较时就是不一样,原因就是fgets对输入字符添 ...
- MySQL++简单使用记录.md
#1.简介 MySQL++ is a powerful C++ wrapper for MySQL’s C API. Its purpose is to make working with queri ...
- Vue-Quill-Editor 修改配置,和图片上传
1.富文本编辑器中的图片上传是将图片转为base64格式的,如果需要上传图片到自己的服务器,需要修改配置. 创建一个quill-config文件 /*富文本编辑图片上传配置*/ /*富文本编辑图片上传 ...