题目戳这里

这道题目纯粹是考思维。

若\(2N \le M\),由于答案肯定是\(s,s+d,\dots,s+(N-1)d\),我们任意枚举两个数\(a,b\),不妨设\(b\)在数列中出现在\(a\)后面\(k\)位,设\(g = b-a\),则\(g\)这个差在所有数出现刚好\(N-K\)次。我们任取个\(g\),用二分或哈希求个差出现次数,就可以得知\(k\)了,然后\(d = gk^{-1}\)。在检验数列中有\(a\)的公差为\(d\)的等差数列是否存在即可。

若\(2N > M\),我们考虑这些数的补集即可,这样就可以求出\(d\)了。

然后为什么\(2N > M\)不能用第一种情况来做呢?因为\(kd\)这个差不一定出现\(N-k\)次。因为假设我枚举到的差是\((N-1)d\),那么\(s+(2N-2)d\)这个数有可能在模\(M\)意义下是在数列中的,但是这个数字又是不合法的。

程序实现还有一些细节,可以参考一下代码。

#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstdlib>
using namespace std; typedef long long ll;
const int maxn = 100010;
int M,N,A[maxn],B[maxn],ans1,ans2; inline int gi()
{
char ch; int ret = 0,f = 1;
do ch = getchar(); while (!(ch >= '0'&&ch <= '9')&&ch != '-');
if (ch == '-') f = -1,ch = getchar();
do ret = ret*10+ch-'0',ch = getchar(); while (ch >= '0'&&ch <= '9');
return ret*f;
} inline ll qsm(ll a,int b)
{
ll ret = 1;
for (;b;b >>= 1,(a *= a) %= M) if (b&1) (ret *= a) %= M;
return ret;
} inline bool find(int *a,int n,int x) { return a[lower_bound(a+1,a+n+1,x)-a] == x; } inline void solve(int *a,int n)
{
if (n == 1) { ans1 = a[1],ans2 = 1; return; }
int tmp = a[2]-a[1],cnt = 0,tot = 1;
for (int i = 1;i <= n;++i) cnt += find(a,n,(a[i]+tmp)%M);
ans2 = qsm(n-cnt,M-2)*tmp%M;
for (int now = a[1],nx;;now = nx,++tot)
{
nx = now+ans2; if (nx >= M) nx -= M;
if (!find(a,n,nx)) break;
}
for (int now = a[1],nx;;now = nx,++tot)
{
ans1 = now; nx = now-ans2; if (nx < 0) nx += M;
if (!find(a,n,nx)) break;
}
if (tot != n) ans1 = -1;
} int main()
{
freopen("763C.in","r",stdin);
freopen("763C.out","w",stdout);
M = gi(); N = gi();
for (int i = 1;i <= N;++i) A[i] = gi();
sort(A+1,A+N+1);
if (N == 1||N == M) printf("%d 1\n",A[1]);
else
{
if (2*N <= M) solve(A,N);
else
{
int n = 0;
for (int i = 0;i < M;++i) if (!find(A,N,i)) B[++n] = i;
solve(B,n);
if (ans1 != -1) { ans1 += (ll)n*ans2%M; if (ans1 >= M) ans1 -= M; }
}
if (ans1 == -1) puts("-1");
else printf("%d %d\n",ans1,ans2);
}
fclose(stdin); fclose(stdout);
return 0;
}

CF763C Timofey and Remoduling的更多相关文章

  1. [CodeForces-763C]Timofey and remoduling

    题目大意: 告诉你一个长度为n的等差数列在模m意义下的乱序值(互不相等),问是否真的存在满足条件的等差数列,并尝试构造任意一个这样的数列. 思路: 首先我们可以有一个结论: 两个等差数列相等,当且仅当 ...

  2. 763A - Timofey and a tree

    A. Timofey and a tree time limit per test 2 seconds memory limit per test 256 megabytes input standa ...

  3. Codeforces Round #395 (Div. 2) D. Timofey and rectangles

    地址:http://codeforces.com/contest/764/problem/D 题目: D. Timofey and rectangles time limit per test 2 s ...

  4. Codeforces Round #395 (Div. 2) C. Timofey and a tree

    地址:http://codeforces.com/contest/764/problem/C 题目: C. Timofey and a tree time limit per test 2 secon ...

  5. Codeforces Round #395 (Div. 2)B. Timofey and cubes

    地址:http://codeforces.com/contest/764/problem/B 题目: B. Timofey and cubes time limit per test 1 second ...

  6. Codeforces 763A. Timofey and a tree

    A. Timofey and a tree 题意:给一棵树,要求判断是否存在一个点,删除这个点后,所有连通块内颜色一样.$N,C \le 10^5$ 想法:这个叫换根吧.先求出一个点合法即其儿子的子树 ...

  7. Codeforces_764_C. Timofey and a tree_(并查集)(dfs)

    C. Timofey and a tree time limit per test 2 seconds memory limit per test 256 megabytes input standa ...

  8. 【codeforces 764B】Timofey and cubes

    time limit per test1 second memory limit per test256 megabytes inputstandard input outputstandard ou ...

  9. 【codeforces 764C】Timofey and a tree

    time limit per test2 seconds memory limit per test256 megabytes inputstandard input outputstandard o ...

随机推荐

  1. redis之cluster(集群)

    搭建redis cluster 1. 准备节点 2. 节点间的通信 3. 分配槽位给节点 redis-cluster架构 多个服务端,负责读写,彼此通信,redis指定了16384个槽. 多匹马儿,负 ...

  2. STM32进阶之串口环形缓冲区实现(转载)

    转载自微信公众号“玩转单片机”,感谢原作者“杰杰”. 队列的概念 在此之前,我们来回顾一下队列的基本概念:队列 (Queue):是一种先进先出(First In First Out ,简称 FIFO) ...

  3. SKIP(插入空行)

    WRITE 'This is the 1st line'. SKIP. WRITE 'This is the 2nd line'. 跳转至某一行 SKIP TO LINE line_number. 插 ...

  4. Spring 框架控制器类方法可用的参数与返回类型

    参数类型 Spring 有内建的 HTTP 消息转换器用于部分简单类型之间的转换 标准 Servlet 类型:HttpServletRequest, HttpServletResponse, Http ...

  5. JavaScript函数constructor的作用,意义

    前几天写了一片 如何用正确的姿势编写jQuery插件 有朋友拍砖,指正.再此谢谢! 讨论:指定函数的constructor作用到底是什么? 我们一般写jQuery插件的时候是这样的: //构造函数 f ...

  6. windows 无法上网问题解决一例

    dhcp获取ip地址,网卡驱动和ip地址获取正常,ping www.baidu.com可以ping通,但是打开浏览器或者qq上网不行,而且系统有提示腾讯管家出错的信息,初步怀疑360和腾讯管家打架导致 ...

  7. 阿里云DTS VS MySQLdump

    云平台的到来,使得越来越多用户的数据库由云下迁到云上.对于这种情况,阿里对此提出两种方案,一种是MySQL自带的MySQLdump,另外一种就是阿里云的DTS. DTS支持异构数据源之间的数据迁移同步 ...

  8. 扩展欧几里得 求ax+by == n的非负整数解个数

    求解形如ax+by == n (a,b已知)的方程的非负整数解个数时,需要用到扩展欧几里得定理,先求出最小的x的值,然后通过处理剩下的区间长度即可得到答案. 放出模板: ll gcd(ll a, ll ...

  9. python json模块 超级详解

    JSON(JavaScript Object Notation, JS 对象标记) 是一种轻量级的数据交换格式.JSON的数据格式其实就是python里面的字典格式,里面可以包含方括号括起来的数组,也 ...

  10. Xampp+Openfire+Spark的简单使用

    Openfire与Spark的简单实用 1.安装Openfire 百度云 提取码:uu11 2.查找路径 /usr/local/openfire 这时候需要将openfire的文件属性都设置为 可读可 ...