题目戳这里

这道题目纯粹是考思维。

若\(2N \le M\),由于答案肯定是\(s,s+d,\dots,s+(N-1)d\),我们任意枚举两个数\(a,b\),不妨设\(b\)在数列中出现在\(a\)后面\(k\)位,设\(g = b-a\),则\(g\)这个差在所有数出现刚好\(N-K\)次。我们任取个\(g\),用二分或哈希求个差出现次数,就可以得知\(k\)了,然后\(d = gk^{-1}\)。在检验数列中有\(a\)的公差为\(d\)的等差数列是否存在即可。

若\(2N > M\),我们考虑这些数的补集即可,这样就可以求出\(d\)了。

然后为什么\(2N > M\)不能用第一种情况来做呢?因为\(kd\)这个差不一定出现\(N-k\)次。因为假设我枚举到的差是\((N-1)d\),那么\(s+(2N-2)d\)这个数有可能在模\(M\)意义下是在数列中的,但是这个数字又是不合法的。

程序实现还有一些细节,可以参考一下代码。

#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstdlib>
using namespace std; typedef long long ll;
const int maxn = 100010;
int M,N,A[maxn],B[maxn],ans1,ans2; inline int gi()
{
char ch; int ret = 0,f = 1;
do ch = getchar(); while (!(ch >= '0'&&ch <= '9')&&ch != '-');
if (ch == '-') f = -1,ch = getchar();
do ret = ret*10+ch-'0',ch = getchar(); while (ch >= '0'&&ch <= '9');
return ret*f;
} inline ll qsm(ll a,int b)
{
ll ret = 1;
for (;b;b >>= 1,(a *= a) %= M) if (b&1) (ret *= a) %= M;
return ret;
} inline bool find(int *a,int n,int x) { return a[lower_bound(a+1,a+n+1,x)-a] == x; } inline void solve(int *a,int n)
{
if (n == 1) { ans1 = a[1],ans2 = 1; return; }
int tmp = a[2]-a[1],cnt = 0,tot = 1;
for (int i = 1;i <= n;++i) cnt += find(a,n,(a[i]+tmp)%M);
ans2 = qsm(n-cnt,M-2)*tmp%M;
for (int now = a[1],nx;;now = nx,++tot)
{
nx = now+ans2; if (nx >= M) nx -= M;
if (!find(a,n,nx)) break;
}
for (int now = a[1],nx;;now = nx,++tot)
{
ans1 = now; nx = now-ans2; if (nx < 0) nx += M;
if (!find(a,n,nx)) break;
}
if (tot != n) ans1 = -1;
} int main()
{
freopen("763C.in","r",stdin);
freopen("763C.out","w",stdout);
M = gi(); N = gi();
for (int i = 1;i <= N;++i) A[i] = gi();
sort(A+1,A+N+1);
if (N == 1||N == M) printf("%d 1\n",A[1]);
else
{
if (2*N <= M) solve(A,N);
else
{
int n = 0;
for (int i = 0;i < M;++i) if (!find(A,N,i)) B[++n] = i;
solve(B,n);
if (ans1 != -1) { ans1 += (ll)n*ans2%M; if (ans1 >= M) ans1 -= M; }
}
if (ans1 == -1) puts("-1");
else printf("%d %d\n",ans1,ans2);
}
fclose(stdin); fclose(stdout);
return 0;
}

CF763C Timofey and Remoduling的更多相关文章

  1. [CodeForces-763C]Timofey and remoduling

    题目大意: 告诉你一个长度为n的等差数列在模m意义下的乱序值(互不相等),问是否真的存在满足条件的等差数列,并尝试构造任意一个这样的数列. 思路: 首先我们可以有一个结论: 两个等差数列相等,当且仅当 ...

  2. 763A - Timofey and a tree

    A. Timofey and a tree time limit per test 2 seconds memory limit per test 256 megabytes input standa ...

  3. Codeforces Round #395 (Div. 2) D. Timofey and rectangles

    地址:http://codeforces.com/contest/764/problem/D 题目: D. Timofey and rectangles time limit per test 2 s ...

  4. Codeforces Round #395 (Div. 2) C. Timofey and a tree

    地址:http://codeforces.com/contest/764/problem/C 题目: C. Timofey and a tree time limit per test 2 secon ...

  5. Codeforces Round #395 (Div. 2)B. Timofey and cubes

    地址:http://codeforces.com/contest/764/problem/B 题目: B. Timofey and cubes time limit per test 1 second ...

  6. Codeforces 763A. Timofey and a tree

    A. Timofey and a tree 题意:给一棵树,要求判断是否存在一个点,删除这个点后,所有连通块内颜色一样.$N,C \le 10^5$ 想法:这个叫换根吧.先求出一个点合法即其儿子的子树 ...

  7. Codeforces_764_C. Timofey and a tree_(并查集)(dfs)

    C. Timofey and a tree time limit per test 2 seconds memory limit per test 256 megabytes input standa ...

  8. 【codeforces 764B】Timofey and cubes

    time limit per test1 second memory limit per test256 megabytes inputstandard input outputstandard ou ...

  9. 【codeforces 764C】Timofey and a tree

    time limit per test2 seconds memory limit per test256 megabytes inputstandard input outputstandard o ...

随机推荐

  1. laravel 基础 --内置函数

    简介 Laravel 自带了一系列 PHP 辅助函数,很多被框架自身使用,如果你觉得方便的话也可以在代码中使用它们. https://laravelacademy.org/post/8967.html ...

  2. Hadoop(17)-MapReduce框架原理-MapReduce流程,Shuffle机制,Partition分区

    MapReduce工作流程 1.准备待处理文件 2.job提交前生成一个处理规划 3.将切片信息job.split,配置信息job.xml和我们自己写的jar包交给yarn 4.yarn根据切片规划计 ...

  3. 贪心算法之Huffman

    Huffman编码,权重越大,离根节点越大.所以就是不断的选取两个最小的树,然后组成一颗新树,加入集合,然后去除已选的两棵树.不断的循环,直到最后的树的集合只剩下一棵,则构建完成,最后输出Huffma ...

  4. java入门---windows和Linux,UNIX,Solaris,FreeBSD下开发环境配置

        首先来看Windows下的操作.我们需要下载java开发工具包JDK.下载地址:http://www.oracle.com/technetwork/java/javase/downloads/ ...

  5. Spark是什么

    官方直达电梯 Spark一种基于内存的通用的实时大数据计算框架(作为MapReduce的另一个更优秀的可选的方案) 通用:Spark Core 用于离线计算,Spark SQL 用于交互式查询,Spa ...

  6. django 解决cors问题

    首页 博客 学院 下载 GitChat TinyMind 论坛 问答 商城 VIP 活动 招聘 ITeye CSTO 写博客 发Chat 登录注册 AFei0018-博客 穷则思变,差则思勤.Pyth ...

  7. 听雷哥浅谈Redis

    Linux下安装redis 1.下载源码,解压缩后编译源码. $ wget http://download.redis.io/releases/redis-2.8.3.tar.gz $ tar xzf ...

  8. CentOS修改网卡名称

    转 一.问题说明 测试环境中出现的小问题,因为虚拟机之间经常复制来复制去,导致网卡配置这块的不一致现象. 配置文件的信息: [root@ora10g network-scripts]# catifcf ...

  9. gitk中文乱码问题处理

    执行了 git config --global gui.encoding utf- 查看 %USERPROFILE%\.gitconfig 文件中也有 [gui] encoding = utf-8 在 ...

  10. jmeter常用的内置变量

    1. vars   API:http://jmeter.apache.org/api/org/apache/jmeter/threads/JMeterVariables.html vars.get(& ...