[BZOJ 1177] Oil
Link:https://www.lydsy.com/JudgeOnline/problem.php?id=1177
Solution:
相当于将大矩形分为3块,取每块中最大的正方形
对于此类分成几块的题目,要想到枚举分割线
一共只有这6种情况:
我们只要先预处理左上左下右上右下四个方向最大答案的前缀和,
再对于每种情况枚举分割线即可
对于最左边的两种情况,只要将中间一列的宽度保证为k即可
Code:
#include <bits/stdc++.h> using namespace std;
const int MAXN=+; int n,m,k,t,res=,s[MAXN][MAXN],a[MAXN][MAXN],b[MAXN][MAXN],c[MAXN][MAXN],d[MAXN][MAXN]; int main()
{
scanf("%d%d%d",&n,&m,&k);
for(int i=;i<=n;i++)
for(int j=;j<=m;j++)
scanf("%d",&t),s[i][j]=s[i-][j]+s[i][j-]-s[i-][j-]+t;
for(int i=n;i>=k;i--) for(int j=m;j>=k;j--) s[i][j]-=s[i-k][j]+s[i][j-k]-s[i-k][j-k]; for(int i=k;i<=n;i++) for(int j=k;j<=m;j++) a[i][j]=max(s[i][j],max(a[i-][j],a[i][j-]));
for(int i=k;i<=n;i++) for(int j=m-k+;j>=;j--) b[i][j]=max(s[i][j+k-],max(b[i-][j],b[i][j+]));
for(int i=n-k+;i>=;i--) for(int j=k;j<=m;j++) c[i][j]=max(s[i+k-][j],max(c[i+][j],c[i][j-]));
for(int i=n-k+;i>=;i--) for(int j=m-k+;j>=;j--) d[i][j]=max(s[i+k-][j+k-],max(d[i+][j],d[i][j+])); for(int i=k;i<=n;i++) for(int j=k;j<=m;j++) res=max(res,a[i][j]+b[i][j+]+c[i+][m]);
for(int i=n-k+;i>=;i--) for(int j=k;j<=m;j++) res=max(res,c[i][j]+d[i][j+]+a[i-][m]);
for(int i=k;i<=n;i++) for(int j=k;j<=m;j++) res=max(res,a[i][j]+c[i+][j]+d[][j+]);
for(int i=k;i<=n;i++) for(int j=m-k+;j>=;j--) res=max(res,b[i][j]+d[i+][j]+c[][j-]); for(int i=*k;i<=n;i++) for(int j=k;j<=m;j++) res=max(res,s[i][j]+a[i-k][m]+c[i+][m]);
for(int j=*k;j<=m;j++) for(int i=k;i<=n;i++) res=max(res,s[i][j]+a[n][j-k]+b[n][j+]); printf("%d",res);
return ;
}
Review:
由求三块权值和最大的不交叉的正方形 -------> 将矩形分为3块 --------> 枚举分割线
碰到求不相交的最值问题时,想到切割+枚举切割线的方法
[BZOJ 1177] Oil的更多相关文章
- BZOJ 1177 Oil(特技枚举)
对于三个正方形的位置一共有六种情况. 预处理出(i,j)左上角,左下角,右上角,右下角区域内最大权值的正方形. 枚举分界线更新答案. 刚开始想了一个错误的DP也是蠢啊. #include<set ...
- 枚举(分类讨论):BZOJ 1177: [Apio2009]Oil
1177: [Apio2009]Oil Time Limit: 15 Sec Memory Limit: 162 MBSubmit: 1477 Solved: 589[Submit] Descri ...
- 【BZOJ 1177】【APIO 2009】Oil
http://www.lydsy.com/JudgeOnline/problem.php?id=1177 前缀和优化,时间复杂度$O(nm)$ 因为数据不全,快速读入会导致RE,切记! #includ ...
- BZOJ 1177 [Apio2009]Oil(递推)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=1177 [题目大意] 给出一个矩阵,从中选出3个k*k且不相交的矩阵,使得其总和最大 [ ...
- [BZOJ]1177: [Apio2009]Oil
题目大意:给出一个n*m的矩阵,选出3个不相交的k*k子矩阵,使得子矩阵中元素和最大.(k<=n,m<=1500) 思路:选出的子矩阵有3种情况:横着排三个.竖着排三个.三角状分布(其中有 ...
- 【BZOJ 1177】 [Apio2009]Oil
[链接] 我是链接,点我呀:) [题意] 在这里输入题意 [题解] 如上图. 显然如果三个正方形.只可能是上面的情况. 则可以处理一下左上角.右上角.左下角.右下角的前缀最大正方形(dp),以及以某一 ...
- 【BZOJ】【1177】【APIO2009】Oil
DP 找出三个正方形,可以转化为将整个油田切成三个矩形块,每块中各找一个正方形区域,切的形式只有6种,分类更新ans即可 题解:http://trinklee.blog.163.com/blog/st ...
- Week Two
2018.12.3: 1.[BZOJ 4819] 2.[BZOJ 4827] 3.[P1919] 4.[FFT模板] 2018.12.4: 1.[NTT] 2.[MTT(CRT)] 3.[MTT(my ...
- BZOJ 4614 【Wf2016】 Oil
题目链接:Oil 感觉同时几线作战有点吃不消啊-- 这道题有一个显然的结论,那就是最优的直线一定过某条线段的端点. 仔细想想很有道理.如果最终的直线没有过线段的端点的话,那么这条直线就一定可以平移,直 ...
随机推荐
- underscore的bind和bindAll方法
bind方法和bindAll方法都是用来设定函数的this值的,区别是调用方式不同. var xiaoming = { say:function(){ console.log('I am xiaomi ...
- bzoj2002: [Hnoi2010]Bounce 弹飞绵羊 分块
这个题体现了分块不只是最大值最小值众数次数,而是一种清真的思想. 我们把整个序列分块,在每个块里处理每个位置跳出这个块的次数和跳出的位置,那么每次修改n0.5,每次查询也是,那么O(m* n0.5)的 ...
- 怎么给word加底纹
- 解决“并非来自 Chrome 网上应用店。”
Chrome谷歌浏览器已停用不支持的扩展程序解决方法 第一种方法:(亲测有效) 1.首先把需要安装的第三方插件,后缀.crx 改成 .rar,然后解压,得到一个文件夹 2.再打开chrome://ex ...
- Java并发编程--ThreadPoolExecutor
概述 为什么要使用线程池? 合理利用线程池能够带来三个好处.第一:降低资源消耗.通过重复利用已创建的线程降低线程创建和销毁造成的消耗.第二:提高响应速度.当任务到达时,任务可以不需要等到线程创建就能立 ...
- 【SPOJ-QTREE】树链剖分
树链剖分学习 https://blog.csdn.net/u013368721/article/details/39734871 https://www.cnblogs.com/George1994/ ...
- codeforces 854 problem E
E. Boredom Ilya is sitting in a waiting area of Metropolis airport and is bored of looking at time t ...
- 端到端测试,protractor测试的教程
之前我们介绍了如何测试某段js代码的逻辑是否正确,考虑的情况是否全面,但是在ui界面上我们每次做好的功能都要自己去填写内容,点击按钮等,那么是否存在自动化测试的工具呢,让这些事情可以自动完成,答案是肯 ...
- bzoj 1878 SDOI2009树状数组 离线操作
本来想写2120的,结果想起来了这个 我们先对于询问左端点排序,用树状数组存区间字母个数,对于每种字母, 第一次出现的位置记录为1,剩下的记录为0,然后记录下,每种颜色 后面第一个和他相同颜色的位置 ...
- Oracle基础 09 概要文件 profile
--创建 profile 概要文件create profile profile123 limit failed_login_attempts 2; --修改用户的 profile 文件alter u ...