【高斯消元】【异或方程组】poj1222 EXTENDED LIGHTS OUT
由于每个点的状态受到其自身和周围四个点的影响,所以可以这样建立异或方程组:
引用题解:
http://hi.baidu.com/ofeitian/item/9899edce6dc6d3d297445264
题目大意:给你一个5*6的矩阵,矩阵里每一个单元都有一个灯和一个开关,如果按下此开关,那么开关所在位置的那个灯和开关前后左右的灯的状态都会改变(即由亮到不亮或由不亮到亮)。给你一个初始的灯的状态,问怎样控制每一个开关使得所有的灯最后全部熄灭(此题保证有唯一解)。
解题思路:高斯消元。很显然每个灯最多只需要按1下(因为按两下和没有按是一个效果)。我们可以定义30和未知数x0、x1.......x29代表每一个位置的开关是否被按。那么对于每一个灯的状态可以列一个方程,假设位置(i,j)处的开关为x(i*6+j),那么我们就可以列出方程:
x(i*6+j)+x((i-1)*6+j)+x((i+1)*6+j)+x(i*6+j-1)+x(i*6+j+1) = bo(mod 2)
(括号里的数字为x的下标,这里假设这些下标都是符合要求的,即都在矩形内,如果不在则可以去掉,当这个灯初始时是开着的,那么bo为1,否则为0)
这样可以列出30个方程,然后用高斯消元解这个方程组即可。
#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
#define N 31
const int dx[]={0,-1,0,1},dy[]={-1,0,1,0},n=30;
bool b[N],x[N],B[N][N+1],A[N][N+1];
int T,id[7][8];
void Madoka()
{
memcpy(B,A,sizeof(A));
for(int i=1;i<=n;++i)
B[i][n+1]=b[i];
for(int i=1;i<=n;++i)
{
int j=i;
for(;j<=n;++j)
if(B[j][i])
break;
swap(B[j],B[i]);
for(int j=1;j<=n;++j)
if(j!=i&&B[j][i])
for(int k=1;k<=n+1;++k)
B[j][k]^=B[i][k];
}
for(int i=1;i<=n;++i) x[i]=B[i][n+1];
}
int main()
{
int pen=0;
for(int i=1;i<=5;++i)
for(int j=1;j<=6;++j)
id[i][j]=++pen;
scanf("%d",&T);
for(int i=1;i<=T;++i)
{
memset(A,0,sizeof(A));
for(int j=1;j<=5;++j)
for(int k=1;k<=6;++k)
{
scanf("%d",&b[id[j][k]]);
A[id[j][k]][id[j][k]]=1;
}
for(int j=1;j<=5;++j)
for(int k=1;k<=6;++k)
for(int l=0;l<4;++l)
if(id[j+dx[l]][k+dy[l]])
A[id[j][k]][id[j+dx[l]][k+dy[l]]]=1;
Madoka();
printf("PUZZLE #%d\n",i);
for(int j=1;j<=5;++j)
{
for(int k=1;k<6;++k)
printf("%d ",x[id[j][k]]);
printf("%d\n",x[id[j][6]]);
}
}
return 0;
}
【高斯消元】【异或方程组】poj1222 EXTENDED LIGHTS OUT的更多相关文章
- BZOJ.1923.[SDOI2010]外星千足虫(高斯消元 异或方程组 bitset)
题目链接 m个方程,n个未知量,求解异或方程组. 复杂度比较高,需要借助bitset压位. 感觉自己以前写的(异或)高斯消元是假的..而且黄学长的写法都不需要回代. //1100kb 324ms #i ...
- UVA11542 Square(高斯消元 异或方程组)
建立方程组消元,结果为2 ^(自由变元的个数) - 1 采用高斯消元求矩阵的秩 方法一: #include<cstdio> #include<iostream> #includ ...
- Tsinsen-A1488 : 魔法波【高斯消元+异或方程组】
高斯消元. 自己只能想出来把每一个点看成一个变量,用Xi表示其状态,这样必定TLE,n^2 个变量,再加上3次方的高斯消元(当然,可以用bitset压位). 正解如下: 我们把地图划分成一个个的横条和 ...
- UVa 11542 (高斯消元 异或方程组) Square
书上分析的太清楚,我都懒得写题解了.=_=|| #include <cstdio> #include <cstring> #include <cmath> #inc ...
- POJ.1830.开关问题(高斯消元 异或方程组)
题目链接 显然我们需要使每个i满足\[( ∑_{j} X[j]*A[i][j] ) mod\ 2 = B[i]\] 求这个方程自由元Xi的个数ans,那么方案数便是\(2^{ans}\) %2可以用^ ...
- UVA 11542 Square 高斯消元 异或方程组求解
题目链接:点击打开链接 白书的例题练练手. . . P161 #include <cstdio> #include <iostream> #include <algori ...
- 【高斯消元解xor方程组】BZOJ2466-[中山市选2009]树
[题目大意] 给出一棵树,初始状态均为0,每反转一个节点的状态,相邻的节点(父亲或儿子)也会反转,问要使状态均为1,至少操作几次? [思路] 一场大暴雨即将来临,白昼恍如黑夜!happy! 和POJ1 ...
- poj1830(高斯消元解mod2方程组)
题目链接:http://poj.org/problem?id=1830 题意:中文题诶- 思路:高斯消元解 mod2 方程组 有 n 个变元,根据给出的条件列 n 个方程组,初始状态和终止状态不同的位 ...
- POJ 1222 EXTENDED LIGHTS OUT(高斯消元解XOR方程组)
http://poj.org/problem?id=1222 题意:现在有5*6的开关,1表示亮,0表示灭,按下一个开关后,它上下左右的灯泡会改变亮灭状态,要怎么按使得灯泡全部处于灭状态,输出方案,1 ...
- poj1222(枚举or高斯消元解mod2方程组)
题目链接: http://poj.org/problem?id=1222 题意: 有一个 5 * 6 的初始矩阵, 1 表示一个亮灯泡, 0 表示一个不亮的灯泡. 对 (i, j) 位置进行一次操作则 ...
随机推荐
- ng依赖注入
依赖注入 1.注入器在组件的构造函数中写服务constructor(private httpreq:HttpService) { } 2.提供器 providers: [HttpService],
- gogole调试请求体的数据怎么知道
在network---->header->request payload中看 详细情况见下图所示:
- MyBatis对象关联关系---- association与collection
Mybatis处理“一对多”的关系时,需要用到associasion元素.处理”多对一“用collection元素来实现(这两个元素在之前mapper文件中提到过). 本例子中,假设一名User可以有 ...
- 转:通过Spring Session实现新一代的Session管理
长期以来,session管理就是企业级Java中的一部分,以致于我们潜意识就认为它是已经解决的问题,在最近的记忆中,我们没有看到这个领域有很大的革新. 但是,现代的趋势是微服务以及可水平扩展的原生云应 ...
- nginx的常规配置
程序员们,在北上广你还能买房吗? >>> nginx的常规配置 nginx的使用非常简单,只需要配置好我们需要的各种指令,就能跑起来.如果你需要添加模块,还需要添加模块方面的配 ...
- HDU 1877 又一版 A+B(进制转换)
看了http://lovnet.iteye.com/blog/1690276的答案 好巧妙的方法 递归实现十进制向m进制转换 #include "stdio.h" int m; v ...
- ZOJ1450 Minimal Circle
You are to write a program to find a circle which covers a set of points and has the minimal area. T ...
- 关于dlib人脸对比,人脸识别
人脸检测 人脸特征点提取 人脸对比,等于两张人脸对比,识别 封装的所有识别函数,直接看下面调用就好了. # coding:utf-8 ''' 本本次封装,我主要是做两张人脸对比. 就只人脸识别部分,简 ...
- [Leetcode Week5]Word Ladder II
Word Ladder II 题解 原创文章,拒绝转载 题目来源:https://leetcode.com/problems/word-ladder-ii/description/ Descripti ...
- javascript的有效校验
//年月日期有效性检验 function yearAndMonthCheck() { var flag = true; var currentyear = new Date().getFullYear ...