题目传送门

题意简述:(来自洛谷)

有n个城市坐落在一条数轴上,第ii个城市位于位置ai​.

城市之间有m辆卡车穿行.每辆卡车有四个参数:si​为起点编号,fi​为终点编号,ci​表示每行驶1个单位长度需要消耗的油量,ri​表示可以在路途中加油的次数.

当卡车到达一个城市的时候可以将油加满(当然也可以不加),在路中无法加油,但是路途中总加油次数不能超过ri​.

所有卡车的油箱都是一样大的,我们称它的容积为V.试求一个最小的V,使得对于所有的卡车都存在一种方案,在路途中任意时刻油箱内的油量大于等于0且路途中总加油次数小于等于ri​的情况下从起点城市到达终点城市.

n,m(n≤400,m≤250000)表示城市数量与卡车数量。

思路:

  此题学习了洛谷的博客,但洛谷的博客有地方是错误的,导致自闭了许久,自己证明了一波,才走出自闭。

  洛谷题解 点这里   但是洛谷题解有错,并且最重要的单调性没有证明。

  首先,主体是一个区间DP

  设 dp{i,j,k}​ 为:从第 i 个城市到第 j 个城市分成 k 段,这 k 段中长度最大的一段的最小值

  边界: dp{i,j,0}=aj-ai(1≤i≤j≤n)。

  状态转移方程

  dp {i,j,k}=dp{i,j,k}​=min(​ (max(dp{i,w,k−1}​,aj​−aw​))(0<k≤n))( i <= w <= j )

  目标:max​(ci*​dp{si​,fi​,ri​}​)  i<=m

以上均取自洛谷,并且洛谷的状态转移方程还写错了。上面这个区间dp的时间复杂度是O(n4)的,显然会超时,要进行优化,洛谷题解中说单调性是显然得出的,,然而我证明了好久。

先说两个结果:

  1)当 k,i 确定, j 在不断向右移时,对每个 j 取到的 w 具有单调性。

  2)同时,当 j 确定时,不同的 w 对应的取值呈“先减后增” 的趋势,

  我们先证明第二点,当i j k 确定时,转移方程中  我们设dp{i,w,k−1}​为 Aw,aj​−aw​ 为Bw,当w变大时,Aw可能变大,Bw必定变小,所以取值一开始肯定是取Bw的,慢慢变的有可能取Aw,可以想象,这个dp方程一开始肯定是w越大越好,但是当某一个临界点,如果比前面大了,那我们会发现,此时的最大值必定不是Bw,因为Bw<B(w-1),这是必定的。所以最大值是Aw,而w越大,Aw则可能变大,但绝不变小,所以不会有变小的趋势了,证毕。

  然后证明第一点,假设j'=j+1,我们先看w是否会前移。发现j变成j'后,只有Bw会变大,Aw是不变的,而越往后的项,最大值取Aw的可能性越大,所以前面的项只会变大,就算当前项变大了,那变大的程度也会和前面的一样,所以取最小值的话当前w必定由于小于w的值。

  那么看w是否会后移,由于Bw会变大,Aw只是可能变大,后面的项比前面的项更有可能用到Aw,所以后面的项可能更优,w可能后移,有单调性,证毕。

  注意不要开数组不要long long,会爆内存,也不要开太大,开了410*410*410会mle。

#include<bits/stdc++.h>
#define clr(a,b) memset(a,b,sizeof(a))
using namespace std;
typedef long long ll;
const int maxn=;
ll ans;
int dp[maxn][maxn][maxn],a[maxn];
int n,m;
int main(){
while(cin>>n>>m)
{
ans=;
for(int i=;i<=n;i++)
{
scanf("%d",&a[i]);
}
for(int i=;i<=n;i++)
{
for(int j=i;j<=n;j++)
{
dp[i][j][]=a[j]-a[i];
}
}
for(int k=;k<=n;k++)
{
for(int i=;i<=n;i++)
{
int w=i;
for(int j=i;j<=n;j++)
{
while(w<j&&max(dp[i][w][k-],a[j]-a[w])>max(dp[i][w+][k-],a[j]-a[w+]))w++;
dp[i][j][k]=max(dp[i][w][k-],a[j]-a[w]);
}
}
}
int s,f,r;
ll c;
while(m--)
{
scanf("%d%d%lld%d",&s,&f,&c,&r);
ans=max(ans,dp[s][f][r]*c);
}
cout<<ans<<endl;
}
}

codeforces 1101F Trucks and Cities 区间dp+单调优化 好题的更多相关文章

  1. Codeforces 1101F Trucks and Cities dp (看题解)

    Trucks and Cities 一个很显然的做法就是二分然后对于每个车贪心取check, 这肯定会TLE, 感觉会给人一种贪心去写的误导... 感觉有这个误导之后很难往dp那个方向靠.. dp[ ...

  2. HDU3480_区间DP平行四边形优化

    HDU3480_区间DP平行四边形优化 做到现在能一眼看出来是区间DP的问题了 也能够知道dp[i][j]表示前  i  个节点被分为  j  个区间所取得的最优值的情况 cost[i][j]表示从i ...

  3. 【Codeforces 321E / BZOJ 5311】【DP凸优化】【单调队列】贞鱼

    目录 题意: 输入格式 输出格式 思路: DP凸优化的部分 单调队列转移的部分 坑点 代码 题意: 有n条超级大佬贞鱼站成一行,现在你需要使用恰好k辆车把它们全都运走.要求每辆车上的贞鱼在序列中都是连 ...

  4. Educational Codeforces Round 61 F 思维 + 区间dp

    https://codeforces.com/contest/1132/problem/F 思维 + 区间dp 题意 给一个长度为n的字符串(<=500),每次选择消去字符,连续相同的字符可以同 ...

  5. Codeforces Gym100543L Outer space invaders 区间dp 动态规划

    原文链接https://www.cnblogs.com/zhouzhendong/p/CF-Gym100543L.html 题目传送门 - CF-Gym100543L 题意 $T$ 组数据. 有 $n ...

  6. Codeforces 508E Arthur and Brackets 区间dp

    Arthur and Brackets 区间dp, dp[ i ][ j ]表示第 i 个括号到第 j 个括号之间的所有括号能不能形成一个合法方案. 然后dp就完事了. #include<bit ...

  7. POJ 1160 经典区间dp/四边形优化

    链接http://poj.org/problem?id=1160 很好的一个题,涉及到了以前老师说过的一个题目,可惜没往那上面想. 题意,给出N个城镇的地址,他们在一条直线上,现在要选择P个城镇建立邮 ...

  8. UVA - 1632 Alibaba (区间dp+常数优化)

    题目链接 设$dp[l][r][p]$为走完区间$[l,r]$,在端点$p$时所需的最短时间($p=0$代表在左端点,$p=1$代表在右端点) 根据题意显然有状态转移方程$\left\{\begin{ ...

  9. 蓝桥杯:合并石子(区间DP+平行四边形优化)

    http://lx.lanqiao.cn/problem.page?gpid=T414 题意:…… 思路:很普通的区间DP,但是因为n<=1000,所以O(n^3)只能拿90分.上网查了下了解了 ...

随机推荐

  1. 使用图形界面管理工具Navicat for MySQL连接Mysql数据库时提示错误:Can't connect to MySQL server (10060)

    版权声明:本文为 testcs_dn(微wx笑) 原创文章,非商用自由转载-保持署名-注明出处,谢谢. https://blog.csdn.net/testcs_dn/article/details/ ...

  2. Ubuntu18.04创建新的系统用户

    目标: 1.为测试学习Docker,在虚拟机OS为18.04里,创建一个系统账号,账号名称:docker 2.在/home下有新建username的文件夹 一.建立账号 1.以root账号登录 2.u ...

  3. Solidity transfer vs send 区别

    原文地址: https://ethereum.stackexchange.com/questions/19341/address-send-vs-address-transfer-best-pract ...

  4. Python基础入门-For循环

    For循环的功能比较强大,他可以帮助我们实现很多重复性的工作.而且for循环能迭代不同的数据结构.他的应用也十分的广泛,作为初学者,我们需要对循环的概念多加理解和练习.接下来我们就来学习for循环的一 ...

  5. mysql 全文搜索 FULLTEXT

    到 3.23.23 时,MySQL 开始支持全文索引和搜索.全文索引在 MySQL 中是一个 FULLTEXT 类型索引.FULLTEXT 索引用于 MyISAM 表,可以在 CREATE TABLE ...

  6. 树形DP-HDU1561 The more, The Better

    很好的树形DP入门题,看着和选课那道题如出一辙. Problem Description ACboy很喜欢玩一种战略游戏,在一个地图上,有N座城堡,每座城堡都有一定的宝物,在每次游戏中ACboy允许攻 ...

  7. HTML、CSS、JavaScript网页制作从入门到精通 (刘西杰) pdf扫描版彩色版​

    html.css.JavaScript网页制作从入门到精通中从基础知识开始讲起,如html的基本标记.文字与段落标记.表格标记.超链接标记……同时介绍了目前流行的web标准与css网页布局实例,以及基 ...

  8. WINDOWS权限大牛们,请进

    大家好, 我遇到一个问题,我的一台windows7去访问另一个电脑的共享,输入账号密码后,老是说密码不正确.而其他电脑去访问共享,密码账号密码后都OK 我想知道原因是什么?

  9. Dapper ORM

    参考地址:https://www.cnblogs.com/lunawzh/p/6607116.html 1.连接语句 var conn = new SqlConnection(Configuratio ...

  10. C# 操作 MongoDB

    今项目使用Mongodb,C#操作MongoDB使用MongoDB.Driver.dll库(Nuget),写了个小Demo,如下: using System; using System.Collect ...