大学招n(n为奇数)个牛 招第i个牛需要ai块钱 第i个牛高考si分

输入招的牛数n 总的牛数c 总的钱数f

以及ai si

问用这些钱招的n个牛高考分数的中位数最大是多少

如果钱不够输出-1

这题结果只与中间那个牛的分数有关

设k=(n+1)/2

则可以得到分比k低的招了(n-1)/2个

比k高的也招了(n-1)/2个

用dpL[i]表示在[1,i]中招(n-1)/2个的最小花费

用dpR[i]表示在[i,c]中招(n-1)/2个的最小花费

排序 枚举k

如果满足dpL[i] + dpR[i] + ai <= F就可行

在可行情况下找最大的中位数就可以了

#include<cstdio>
#include<algorithm>
#include<cstring>
#include<queue>
using namespace std;
const int N=;
int dpl[N],dpr[N];
priority_queue<int> Q;
struct Data
{
int s,f;
}cow[N];
bool comp(Data a,Data b)
{
if(a.s!=b.s)
return a.s>b.s;
else
return a.f<b.f;
}
int main()
{
int n,c,f;
while(scanf("%d%d%d",&n,&c,&f)!=EOF)
{
int nu=(n-)/;
for(int i=;i<=c;i++)
scanf("%d%d",&cow[i].s,&cow[i].f);
sort(cow+,cow+c+,comp);
while(!Q.empty())
Q.pop();
int sum=;
for(int i=;i<=nu;i++)
Q.push(cow[i].f),sum+=cow[i].f;
dpl[nu]=sum;
for(int i=nu+;i<=c;i++)
{
if(cow[i].f>=Q.top())
dpl[i]=sum;
else
{
sum=sum-Q.top()+cow[i].f;
Q.pop();
Q.push(cow[i].f);
dpl[i]=sum;
}
}
sum=;
while(!Q.empty())
Q.pop();
for(int i=c;i>=c-nu+;i--)
Q.push(cow[i].f),sum+=cow[i].f;
dpr[c-nu+]=sum;
for(int i=c-nu;i>=;i--)
{
if(cow[i].f>=Q.top())
dpr[i]=sum;
else
{
sum=sum-Q.top()+cow[i].f;
Q.pop();
Q.push(cow[i].f);
dpr[i]=sum;
}
}
bool flag=false;
for(int i=nu+;i<=c-nu;i++)
{
if(cow[i].f+dpl[i-]+dpr[i+]<=f)
{
flag=true;
printf("%d\n",cow[i].s);
break;
}
}
if(!flag)
printf("-1\n");
}
return ;
}

poj2010的更多相关文章

  1. POJ2010 Moo University - Financial Aid(二分法)

    题目地址 分析:如果用二分法,关键是score和aid分开排序,score排序是为了充分利用中位数的性质,这样就可以确定m左右必须各选N/2个,到这之后有人是用dp求最优解,可以再次按照aid排序一次 ...

  2. Moo University - Financial Aid [POJ2010] [堆]

    题意: 在C头牛里选N头牛,每头牛需要花掉一定经费ai才能得到一定得bi分,在不超过经费F的情况下,使得N头牛的得分中位数最大.(1 <= N <= 19,999,奇数) (N <= ...

  3. Poj2010 Moo University - Financial Aid

    题意的话,就看其他人的吧 概括:二分中位数 大体上便是二分一个中位数,带入检验,若分数比他小的有\(\lfloor n/2 \rfloor\)个,分数比他的大的也有这么多,而且贪心的买,花费小于预算. ...

  4. poj2010 Moo University - Financial Aid 优先队列

    Description Bessie noted that although humans have many universities they can attend, cows have none ...

  5. poj3月题解

    poj2110 二分答案+bfs判定 poj2112 二分答案+最大流判定(二分答案真乃USACO亲儿子) poj1986 裸的LCA,值得注意的是,树中任意两点的距离可以等于这两点到根的距离减去2* ...

  6. OJ题目分类

    POJ题目分类 | POJ题目分类 | HDU题目分类 | ZOJ题目分类 | SOJ题目分类 | HOJ题目分类 | FOJ题目分类 | 模拟题: POJ1006 POJ1008 POJ1013 P ...

  7. POJ_2010 Moo University - Financial Aid 【堆预处理】

    一.题面 POJ2010 二.分析 堆预处理 首先可以考虑吧随便取一个点,判断两侧的最小的总费用是多少,然后相加判断是否满足条件.如果直接判断会超时,所以需要用大根堆预处理一下.先看从分数最小的往最大 ...

  8. 【POJ - 2010】Moo University - Financial Aid(优先队列)

    Moo University - Financial Aid Descriptions 奶牛大学:奶大招生,从C头奶牛中招收N(N为奇数)头.它们分别得分score_i,需要资助学费aid_i.希望新 ...

随机推荐

  1. zookeeper部署搭建

    zookeeper教程 1.先在linux系统中安装jdk并配置环境变量,可以参考下面的链接1 2.下载安装zookeeper软件 教程参考: 链接1:http://www.linuxidc.com/ ...

  2. Too many open files 问题

    1.解决办法 (1)查看 查看当前系统打开的文件数量 lsof | wc -l watch "lsof | wc -l" 查看某一进程的打开文件数量 lsof -p pid | w ...

  3. Hadoop相关知识整理系列之一:HBase基本架构及原理

    1. HBase框架简单介绍 HBase是一个分布式的.面向列的开源数据库,它不同于一般的关系数据库,是一个适合于非结构化数据存储的数据库.另一个不同的是HBase基于列的而不是基于行的模式.HBas ...

  4. 斯坦福机器学习视频笔记 Week8 无监督学习:聚类与数据降维 Clusting & Dimensionality Reduction

    监督学习算法需要标记的样本(x,y),但是无监督学习算法只需要input(x). 您将了解聚类 - 用于市场分割,文本摘要,以及许多其他应用程序. Principal Components Analy ...

  5. etcd 安装部署

    etcd 是coreos团队开发的分布式服务发现键值存储仓库. github地址: https://github.com/coreos/etcd 安装: 1.下载etcd最新版本 https://gi ...

  6. QT 实现按住鼠标左键点击对话框空白处,拖动对话框

    定义头文件 QPoint move_point; //移动的距离     bool mouse_press; //按下鼠标左键 protected:     void mousePressEvent( ...

  7. Flume-NG源码阅读之HDFSEventSink

    HDFSEventSink是flume中一个很重要的sink,配置文件中type=hdfs.与此sink相关的类都在org.apache.flume.sink.hdfs包中. HDFSEventSin ...

  8. SPOJ1825 FTOUR2 - Free tour II

    本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000 作者博客:http://www.cnblogs.com/ljh2000-jump/ ...

  9. hdoj1004--Let the Balloon Rise

    Problem Description Contest time again! How excited it is to see balloons floating around. But to te ...

  10. JMeter接口测试报错,反馈和postman不一样(一)

    今天发现一个小的细节 同样一条请求,postman里面直接写就好 JMeter里面需要把编码加上 例如,同样一句话 postman里面这么写,返回值为 但是在JMeter里面这么写 显示结果为 在这里 ...