poj2010
大学招n(n为奇数)个牛 招第i个牛需要ai块钱 第i个牛高考si分
输入招的牛数n 总的牛数c 总的钱数f
以及ai si
问用这些钱招的n个牛高考分数的中位数最大是多少
如果钱不够输出-1
这题结果只与中间那个牛的分数有关
设k=(n+1)/2
则可以得到分比k低的招了(n-1)/2个
比k高的也招了(n-1)/2个
用dpL[i]表示在[1,i]中招(n-1)/2个的最小花费
用dpR[i]表示在[i,c]中招(n-1)/2个的最小花费
排序 枚举k
如果满足dpL[i] + dpR[i] + ai <= F就可行
在可行情况下找最大的中位数就可以了
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<queue>
using namespace std;
const int N=;
int dpl[N],dpr[N];
priority_queue<int> Q;
struct Data
{
int s,f;
}cow[N];
bool comp(Data a,Data b)
{
if(a.s!=b.s)
return a.s>b.s;
else
return a.f<b.f;
}
int main()
{
int n,c,f;
while(scanf("%d%d%d",&n,&c,&f)!=EOF)
{
int nu=(n-)/;
for(int i=;i<=c;i++)
scanf("%d%d",&cow[i].s,&cow[i].f);
sort(cow+,cow+c+,comp);
while(!Q.empty())
Q.pop();
int sum=;
for(int i=;i<=nu;i++)
Q.push(cow[i].f),sum+=cow[i].f;
dpl[nu]=sum;
for(int i=nu+;i<=c;i++)
{
if(cow[i].f>=Q.top())
dpl[i]=sum;
else
{
sum=sum-Q.top()+cow[i].f;
Q.pop();
Q.push(cow[i].f);
dpl[i]=sum;
}
}
sum=;
while(!Q.empty())
Q.pop();
for(int i=c;i>=c-nu+;i--)
Q.push(cow[i].f),sum+=cow[i].f;
dpr[c-nu+]=sum;
for(int i=c-nu;i>=;i--)
{
if(cow[i].f>=Q.top())
dpr[i]=sum;
else
{
sum=sum-Q.top()+cow[i].f;
Q.pop();
Q.push(cow[i].f);
dpr[i]=sum;
}
}
bool flag=false;
for(int i=nu+;i<=c-nu;i++)
{
if(cow[i].f+dpl[i-]+dpr[i+]<=f)
{
flag=true;
printf("%d\n",cow[i].s);
break;
}
}
if(!flag)
printf("-1\n");
}
return ;
}
poj2010的更多相关文章
- POJ2010 Moo University - Financial Aid(二分法)
题目地址 分析:如果用二分法,关键是score和aid分开排序,score排序是为了充分利用中位数的性质,这样就可以确定m左右必须各选N/2个,到这之后有人是用dp求最优解,可以再次按照aid排序一次 ...
- Moo University - Financial Aid [POJ2010] [堆]
题意: 在C头牛里选N头牛,每头牛需要花掉一定经费ai才能得到一定得bi分,在不超过经费F的情况下,使得N头牛的得分中位数最大.(1 <= N <= 19,999,奇数) (N <= ...
- Poj2010 Moo University - Financial Aid
题意的话,就看其他人的吧 概括:二分中位数 大体上便是二分一个中位数,带入检验,若分数比他小的有\(\lfloor n/2 \rfloor\)个,分数比他的大的也有这么多,而且贪心的买,花费小于预算. ...
- poj2010 Moo University - Financial Aid 优先队列
Description Bessie noted that although humans have many universities they can attend, cows have none ...
- poj3月题解
poj2110 二分答案+bfs判定 poj2112 二分答案+最大流判定(二分答案真乃USACO亲儿子) poj1986 裸的LCA,值得注意的是,树中任意两点的距离可以等于这两点到根的距离减去2* ...
- OJ题目分类
POJ题目分类 | POJ题目分类 | HDU题目分类 | ZOJ题目分类 | SOJ题目分类 | HOJ题目分类 | FOJ题目分类 | 模拟题: POJ1006 POJ1008 POJ1013 P ...
- POJ_2010 Moo University - Financial Aid 【堆预处理】
一.题面 POJ2010 二.分析 堆预处理 首先可以考虑吧随便取一个点,判断两侧的最小的总费用是多少,然后相加判断是否满足条件.如果直接判断会超时,所以需要用大根堆预处理一下.先看从分数最小的往最大 ...
- 【POJ - 2010】Moo University - Financial Aid(优先队列)
Moo University - Financial Aid Descriptions 奶牛大学:奶大招生,从C头奶牛中招收N(N为奇数)头.它们分别得分score_i,需要资助学费aid_i.希望新 ...
随机推荐
- zookeeper部署搭建
zookeeper教程 1.先在linux系统中安装jdk并配置环境变量,可以参考下面的链接1 2.下载安装zookeeper软件 教程参考: 链接1:http://www.linuxidc.com/ ...
- Too many open files 问题
1.解决办法 (1)查看 查看当前系统打开的文件数量 lsof | wc -l watch "lsof | wc -l" 查看某一进程的打开文件数量 lsof -p pid | w ...
- Hadoop相关知识整理系列之一:HBase基本架构及原理
1. HBase框架简单介绍 HBase是一个分布式的.面向列的开源数据库,它不同于一般的关系数据库,是一个适合于非结构化数据存储的数据库.另一个不同的是HBase基于列的而不是基于行的模式.HBas ...
- 斯坦福机器学习视频笔记 Week8 无监督学习:聚类与数据降维 Clusting & Dimensionality Reduction
监督学习算法需要标记的样本(x,y),但是无监督学习算法只需要input(x). 您将了解聚类 - 用于市场分割,文本摘要,以及许多其他应用程序. Principal Components Analy ...
- etcd 安装部署
etcd 是coreos团队开发的分布式服务发现键值存储仓库. github地址: https://github.com/coreos/etcd 安装: 1.下载etcd最新版本 https://gi ...
- QT 实现按住鼠标左键点击对话框空白处,拖动对话框
定义头文件 QPoint move_point; //移动的距离 bool mouse_press; //按下鼠标左键 protected: void mousePressEvent( ...
- Flume-NG源码阅读之HDFSEventSink
HDFSEventSink是flume中一个很重要的sink,配置文件中type=hdfs.与此sink相关的类都在org.apache.flume.sink.hdfs包中. HDFSEventSin ...
- SPOJ1825 FTOUR2 - Free tour II
本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000 作者博客:http://www.cnblogs.com/ljh2000-jump/ ...
- hdoj1004--Let the Balloon Rise
Problem Description Contest time again! How excited it is to see balloons floating around. But to te ...
- JMeter接口测试报错,反馈和postman不一样(一)
今天发现一个小的细节 同样一条请求,postman里面直接写就好 JMeter里面需要把编码加上 例如,同样一句话 postman里面这么写,返回值为 但是在JMeter里面这么写 显示结果为 在这里 ...