Description

Could you imaging a monkey writing computer programs? Surely monkeys are smart among animals. But their limited intelligence is no match for our human beings. However, there is a theorem about monkeys, and it states that monkeys can write everything if given enough time. The theorem is called “Infinite monkey theorem”. It states that a monkey hitting keys at random on a typewriter keyboard for an infinite amount of time will almost surely type any given text, which of course includes the programs you are about to write (All computer programs can be represented as text, right?). It’s very easy to prove this theorem. A little calculation will show you that if the monkey types for an infinite length of time the probability that the output contains a given text will approach 100%. However, the time used is too long to be physically reasonable. The monkey will not be able to produce any useful programs even if it types until the death of the universe. To verify this and ensure that our human beings are not replaceable by monkeys, you are to calculate the probability that a monkey will get things right.
 

Input

There will be several test cases. Each test case begins with a line containing two integers n and m separated by a whitespace (2<=n<=26, 1<=m<=1000). n is the number of keys on the typewriter and the monkey will hit these keys m times. Thus the typewriter will finally produce an output of m characters. The following n lines describe keys on the typewriter. Each line has a lower case letter and a real number separated by a whitespace. The letter indicates what the typewriter will produce if the monkey hits that key and the real number indicates the probability that the monkey will hit this key. Two hits of the monkey are independent of each other (Two different hits have the same probability for a same key), and sum of all the probabilities for each key is ensured to be 1. The last line of the test case contains a word composed of lower case letters. The length of the word will be less than or equal to 10. The input will end with a line of two zeros separated by a whitespace. This line should not be processed.
 

Output

For each test case, output one line containing the probability that the given word will appear in the typewriter’s output. The output should be in percentage format and numbers should be rounded to two digits after the decimal point.

题目大意:有n个字母,每个字母有一个敲击概率,敲m次,问敲m次之后的串包含给出子串的概率是多少。

思路:对子串建立一个trie树,建一个自动机(像我这种懒得想的人会先建出一个AC自动机),得出每个点走一步到达的位置。然后DP,dp[m][x]为第m步走到第x个点的概率,最后把dp[m][x]加起来,再拿1-sum就是答案了。

PS:其实我觉得直接KMP也可以……反正给出的串很短……

代码(0MS):

 #include <cstdio>
#include <cstring>
#include <algorithm>
#include <queue>
using namespace std; struct Node {
Node *go[], *fail;
int id;
Node(int i = ) {
id = i;
memset(go, , sizeof(go));
fail = ;
}
}; void build(Node *root, char *str) {
Node *p = root;
for(int i = ; str[i]; ++i) {
int index = str[i] - 'a';
if(!p->go[index]) p->go[index] = new Node(i + );
p = p->go[index];
}
} void makeFail(Node *root) {
queue<Node*> que; que.push(root);
while(!que.empty()) {
Node *tmp = que.front(); que.pop();
for(int i = ; i < ; ++i) {
if(!tmp->go[i]) continue;
if(tmp == root) tmp->go[i]->fail = root;
else {
Node *p = tmp->fail;
while(p) {
if(p->go[i]) {
tmp->go[i]->fail = p->go[i];
break;
}
p = p->fail;
}
if(!p) tmp->go[i]->fail = root;
}
que.push(tmp->go[i]);
}
}
root->fail = root;
} void makeGo(Node *root, char *str) {
Node *tmp = root;
for(int i = ; i < ; ++i)
if(i != str[] - 'a') root->go[i] = root;
for(int i = ; str[i]; ++i) {
int index = str[i] - 'a';
tmp = tmp->go[index];
for(int j = ; j < ; ++j) {
Node *p = tmp;
while(true) {
if(p->go[j]) {
tmp->go[j] = p->go[j];
break;
}
p = p->fail;
if(p == root) break;
}
if(p == root) tmp->go[j] = root->go[j];
}
}
} int n, m;
char s[];
double dp[][];
double pro[]; double solve(Node *root) {
int cur = , len = strlen(s);
dp[cur][] = ;
for(int i = ; i <= len; ++i) dp[cur][i] = ;
for(int t = ; t < m; ++t) {
for(int i = ; i <= len; ++i) dp[cur ^ ][i] = ;
for(int i = ; i < ; ++i)
dp[cur ^ ][root->go[i]->id] += pro[i] * dp[cur][];
Node *tmp = root;
for(int i = ; i < len - ; ++i) {
int index = s[i] - 'a';
tmp = tmp->go[index];
for(int j = ; j < ; ++j)
dp[cur ^ ][tmp->go[j]->id] += pro[j] * dp[cur][i + ];
}
cur ^= ;
//for(int i = 0; i <= len; ++i) printf("%.6f ", dp[cur][i]); printf("\n");
}
double ret = ;
for(int i = ; i < len; ++i) {
ret += dp[cur][i];
}
return - ret;
} int main() {
while(scanf("%d%d", &n, &m) != EOF) {
if(n == && m == ) break;
char c; double x;
for(int i = ; i < ; ++i) pro[i] = ;
for(int i = ; i < n; ++i)
scanf(" %c%lf", &c, &x), pro[c - 'a'] = x;
scanf("%s", s);
Node *root = new Node;
build(root, s);
makeFail(root);
makeGo(root, s);
printf("%.2f%%\n", solve(root) * );
}
}

HDU 3689 Infinite monkey theorem(DP+trie+自动机)(2010 Asia Hangzhou Regional Contest)的更多相关文章

  1. HDU 3689 Infinite monkey theorem [KMP DP]

    Infinite monkey theorem Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Oth ...

  2. hdu 3689 Infinite monkey theorem

    Infinite monkey theorem Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/ ...

  3. HDU 3689 Infinite monkey theorem ——(自动机+DP)

    这题由于是一个单词,其实直接kmp+dp也无妨.建立自动机当然也是可以的.设dp[i][j]表示匹配到第i个字母的时候,在单词中处于第j个位置的概率,因此最终的答案是dp[0~m][len],m是输入 ...

  4. [HDU 3689]Infinite monkey theorem (KMP+概率DP)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3689 黄老师说得对,题目只有做wa了才会有收获,才会有提高. 题意:一个猴子敲键盘,键盘上有n个键,猴 ...

  5. [AC自己主动机+可能性dp] hdu 3689 Infinite monkey theorem

    意甲冠军: 给n快报,和m频率. 然后进入n字母出现的概率 然后给目标字符串str 然后问m概率倍的目标字符串是敲数量. 思维: AC自己主动机+可能性dp简单的问题. 首先建立trie图,然后就是状 ...

  6. ●HDU 3689 Infinite monkey theorem

    题链: http://acm.hdu.edu.cn/showproblem.php?pid=3689题解: KMP,概率dp (字符串都从1位置开始) 首先对模式串S建立next数组. 定义dp[i] ...

  7. HDU 3696 Farm Game(拓扑+DP)(2010 Asia Fuzhou Regional Contest)

    Description “Farm Game” is one of the most popular games in online community. In the community each ...

  8. HDU 3685 Rotational Painting(多边形质心+凸包)(2010 Asia Hangzhou Regional Contest)

    Problem Description Josh Lyman is a gifted painter. One of his great works is a glass painting. He c ...

  9. HDU 3686 Traffic Real Time Query System(双连通分量缩点+LCA)(2010 Asia Hangzhou Regional Contest)

    Problem Description City C is really a nightmare of all drivers for its traffic jams. To solve the t ...

随机推荐

  1. vue+nodejs+express+mysql 建立一个在线网盘程序

    vue+nodejs+express+mysql 建立一个在线网盘程序 目录 vue+nodejs+express+mysql 建立一个在线网盘程序 第一章 开发环境准备 1.1 开发所用工具简介 1 ...

  2. harbor中碰到的问题

    harbor部署整体比较简单,但是就是这么简单的东西稍微改变点配置文件就会有不小的问题 1.问题1 部署harbor1.6发现web界面删除的镜像在push一遍上去后,镜像大小为0 且无法删除,这个问 ...

  3. linux tail + head 查看指定行

    取出一段数据后,需要获取指定行 file # 前10行 file # 不要最后10行的前面所有行 file # 后10行 file # 不要前面10行的后面所有行 | # 不要前后10行剩余的所有行

  4. Percona-Tookit工具包之pt-ioprofile

      Preface       As a matter of fact,disk IO is the most important factor which tremendously influenc ...

  5. JVM 垃圾回收机制和常见算法和 JVM 的内存结构和内存分配(面试题)

    一.JVM 垃圾回收机制和常见算法 Sun 公司只定义了垃圾回收机制规则而不局限于其实现算法,因此不同厂商生产的虚拟机采用的算法也不尽相同.GC(Garbage Collector)在回收对象前首先必 ...

  6. 洛谷 T51922 父子

    题目描述 对于全国各大大学的男生寝室,总是有各种混乱的父子关系. 那么假设现在我们一个男生寝室有不同的 nn 个人,每个人都至多有一个“爸爸”,可以有多个“儿子”,且有且只有一个人没有“爸爸”(毕竟是 ...

  7. print(__file__)返回<encoding error>的问题

    今天写了一下代码,本来是想得到当前文件的上面三层的目录的,结果返回的却是错误 import os import sys print(__file__) # 得到上上层目录的路径之后,加入到默认的环境变 ...

  8. Overview of the High Efficiency Video Coding (HEVC) Standard阅读笔记

    1.INTRODUCTION High Efficiency Video Coding(HEVC) <-> H.265 MPEG-4 Advanced Video Coding(AVC) ...

  9. R语言学习笔记(十七):data.table包中melt与dcast函数的使用

    melt函数可以将宽数据转化为长数据 dcast函数可以将长数据转化为宽数据 > DT = fread("melt_default.csv") > DT family_ ...

  10. HDU 1495 非常可乐 (只是转了个弯的广搜题)

    N - 非常可乐 =========================================================================================== ...