bzoj 3829: [Poi2014]FarmCraft 树形dp+贪心
题意:
$mhy$ 住在一棵有 $n$ 个点的树的 $1$ 号结点上,每个结点上都有一个妹子。
$mhy$ 从自己家出发,去给每一个妹子都送一台电脑,每个妹子拿到电脑后就会开始安装 $zhx$ 牌杀毒软件,第 $i$ 个妹子安装时间为 $Ci$。
树上的每条边 $mhy$ 能且仅能走两次,每次耗费 $1$ 单位时间。$mhy$ 送完所有电脑后会回自己家里然后开始装 $zhx$ 牌杀毒软件。
卸货和装电脑是不需要时间的。
求所有妹子和 $mhy$ 都装好 $zhx$ 牌杀毒软件的最短时间。
题解:由于每条边最多走两次,所以如果进入点 $x$,必须要遍历完 $x$ 的所有子节点才能出来,我们考虑树形dp.
令 $f[i]$ 表示进入点 $i$ ,安装完 $i$ 子树中所有电脑的最小时刻,$size[i]$ 表示 $i$ 点子树中节点数量.
那么,对于点 $i$ 来说,我们就是要安排一个遍历 $i$ 点所有儿子的顺序,使得:
$max(f[1]+1,2size[1]+f[2]+1,2size[1]+2size[2]+f[3]+1,.....\sum_{i=1}^{n-1}size[i]+f[n]+1)$ 的最大值最小.
但是,我们并不知道该如何安排遍历儿子的顺序,但是我们可以考虑只有两个儿子的情况,然后发现:
若有 $i,j$ 而 $f[i]-2size[i]<f[j]-2size[j]$,则 $j$ 在 $i$ 之前访问更优.
对儿子排完序后依次累加即可.
#include <bits/stdc++.h>
#define N 500004
#define LL long long
#define setIO(s) freopen(s".in","r",stdin)
using namespace std;
char *p1,*p2,buf[100000];
#define nc() (p1==p2&&(p2=(p1=buf)+fread(buf,1,100000,stdin),p1==p2)?EOF:*p1++)
int rd() {int x=0; char c=nc(); while(c<48) c=nc(); while(c>47) x=(((x<<2)+x)<<1)+(c^48),c=nc(); return x;}
struct data
{
int f,size,id;
data(int f=0,int size=0,int id=0):f(f),size(size),id(id){}
};
bool cmp(data a,data b)
{
return a.f-2*a.size==b.f-2*b.size?a.f>b.f:a.f-2*a.size>b.f-2*b.size;
}
int n,edges;
vector<data>G[N];
int hd[N],to[N<<1],nex[N<<1],val[N],f[N],size[N];
void add(int u,int v)
{
nex[++edges]=hd[u],hd[u]=edges,to[edges]=v;
}
void dfs(int u,int ff)
{
size[u]=1;
for(int i=hd[u];i;i=nex[i])
{
int v=to[i];
if(v==ff) continue;
dfs(v,u);
G[u].push_back(data(f[v]+1,size[v],v));
size[u]+=size[v];
}
sort(G[u].begin(),G[u].end(),cmp);
int cur=0;
if(u!=1) f[u]=val[u];
for(int i=0;i<G[u].size();++i)
{
f[u]=max(f[u],cur+G[u][i].f);
cur+=2*G[u][i].size;
}
}
int main()
{
// setIO("input");
int i,j;
n=rd();
for(i=1;i<=n;++i) val[i]=rd();
for(i=1;i<n;++i)
{
int u,v;
u=rd(),v=rd();
add(u,v), add(v,u);
}
dfs(1,0);
f[1]=max(f[1], size[1]*2-2+val[1]);
printf("%d\n",f[1]);
return 0;
}
bzoj 3829: [Poi2014]FarmCraft 树形dp+贪心的更多相关文章
- BZOJ3829[Poi2014]FarmCraft——树形DP+贪心
题目描述 In a village called Byteville, there are houses connected with N-1 roads. For each pair of ho ...
- [BZOJ 3829][POI2014] FarmCraft
先贴一波题面... 3829: [Poi2014]FarmCraft Time Limit: 20 Sec Memory Limit: 128 MBSubmit: 421 Solved: 197[ ...
- 【BZOJ3829】[Poi2014]FarmCraft 树形DP(贪心)
[BZOJ3829][Poi2014]FarmCraft Description In a village called Byteville, there are houses connected ...
- [POI2014]FAR-FarmCraft 树形DP + 贪心思想
(感觉洛谷上题面那一小段中文根本看不懂啊,好多条件都没讲,直接就是安装也要一个时间啊,,,明明不止啊!还好有百度翻译......) 题意:一棵树,一开始在1号节点(root),边权都为1,每个点有点权 ...
- POI2014 FAR-FarmCraft 树形DP+贪心
题目链接 https://www.luogu.org/problem/P3574 题意 翻译其实已经很明确了 分析 这题一眼就是贪心啊,但贪心的方法要思索一下,首先是考虑先走时间多的子树,但不太现实, ...
- 【bzoj4027】[HEOI2015]兔子与樱花 树形dp+贪心
题目描述 很久很久之前,森林里住着一群兔子.有一天,兔子们突然决定要去看樱花.兔子们所在森林里的樱花树很特殊.樱花树由n个树枝分叉点组成,编号从0到n-1,这n个分叉点由n-1个树枝连接,我们可以把它 ...
- Bzoj 1131[POI2008]STA-Station (树形DP)
Bzoj 1131[POI2008]STA-Station (树形DP) 状态: 设\(f[i]\)为以\(i\)为根的深度之和,然后考虑从他父亲转移. 发现儿子的深度及其自己的深度\(-1\) 其余 ...
- 【BZOJ3522】[Poi2014]Hotel 树形DP
[BZOJ3522][Poi2014]Hotel Description 有一个树形结构的宾馆,n个房间,n-1条无向边,每条边的长度相同,任意两个房间可以相互到达.吉丽要给他的三个妹子各开(一个)房 ...
- [BZOJ1596] [Usaco2008 Jan]电话网络(树形DP || 贪心)
传送门 1.树形DP #include <cstdio> #include <cstring> #include <iostream> #define N 1000 ...
随机推荐
- centos7编译安装memcached
1.libevent 源码地址:https://github.com/libevent/libevent/releases/download/release-2.1.8-stable/libevent ...
- input获得焦点时,如何让外边框不变蓝
border 可应用于几乎所有有形的html元素,而outline 是针对链接.表单控件和ImageMap等元素设计. outline的效果将随元素的 focus 而自动出现,相应的随 blur 而自 ...
- Spring核心概念学习笔记
1.Spring主要用到两种设计模式 1.1 工厂模式 Spring容器就是实例化和管理全部Bean的工厂. 工厂模式可以将Java对象的调用者从被调用者的实现逻辑中分离出来. 调用者只关心被调用者必 ...
- mac环境下Android 反编译
连接地址: https://www.jianshu.com/p/3a305f32c4a3
- Kconfig和Makefile
内核源码树的目录下都有Kconfig和Makefile.在内核配置make menuconfig时,从Kconfig中读出菜单,用户勾选后保存到.config中.在内核编译时,Makefile调用这个 ...
- 【hbase】hbase-2.2.1配置独立的zookeeper的安装与测试
下载hbase-2.2.1-bin.tar.gz并执行安装命令: [hadoop@hadoop01 ~]$ tar -zxvf hbase--bin.tar.gz 查看安装目录: [hadoop@ha ...
- 【DRF框架】认证组件
DRF框架的认证组件 核心代码: self.perform_authentication(request) 框架自带模块: from rest_framework import a ...
- python面试总结4(算法与内置数据结构)
算法与内置数据结构 常用算法和数据结构 sorted dict/list/set/tuple 分析时间/空间复杂度 实现常见数据结构和算法 数据结构/算法 语言内置 内置库 线性结构 list(列表) ...
- DevOps简介_转
转自:DevOps简介 刘大飞 DevOps 是一个完整的面向IT运维的工作流,以 IT 自动化以及持续集成(CI).持续部署(CD)为基础,来优化程式开发.测试.系统运维等所有环节. Dev ...
- C实现除法
C实现除法 来源 Leetcode上的一个题,做完后感觉很有意义,因而记录. 实际上自己也查阅了不少的实现除法的方式,最后还是感觉这个方法是最好的,没有别的原因,就是快. 需要注意的一些点 正整数之间 ...