题意:给定N点N边的无向连通图,现在让你在图中找一点作为餐厅,使得最远点距离这点最近。

思路:为了保留整数,我们求最小直径,最后去除2。  直径来源于两部分:

1,在外向树中; 那么就是树的直接,一棵树求直径直接跑一边DP就可以了。(或者两遍BFS吧,麻烦一点而已),假设最大值为ans1。

2,可能通过了环。 一定有环上的边不在直接上,我们枚举这个断边。 那么现在就相当于一个X元环,环上的边有权值,X个点也各有权值,现在枚举每个断边,变成一条带枝桠的链,让你求ans2=min(最长链)。

答案就是二者取max(ans1,ans2)。

对于第二份部分,我们可以通过记录一个前缀和,一个后缀和,一个前缀答案,后缀答案,取得。

而bzoj1791让你求基环树的直径,那就是所有位置取max,通过环的部分可以加倍成链用单调队列搞定。

#include<bits/stdc++.h>
#define ll long long
#define rep(i,a,b) for(int i=a;i<=b;i++)
using namespace std;
const int maxn=;
int Laxt[maxn],Next[maxn],To[maxn],Len[maxn],cnt=;
int r[maxn],vis[maxn],tot;
ll L[maxn],sum[maxn],ans,dp[maxn],p[maxn];
void add(int u,int v,int w)
{
Next[++cnt]=Laxt[u]; Laxt[u]=cnt; To[cnt]=v; Len[cnt]=w;
}
bool dfs(int u,int f)
{
if(vis[u]==)
{ vis[u]=; r[++tot]=u;L[tot]=Len[f]; return true;} //开始出现环
vis[u]=;
for(int i=Laxt[u];i;i=Next[i]){
if(i==(f^)) continue;
if(dfs(To[i],i)) {
if(vis[u]==) return false; //环遍历完了
else {vis[u]=; r[++tot]=u; L[tot]=Len[f]; return true;}
}
}
return false;
}
void treedp(int u,int f) //得到外向树的直径
{
for(int i=Laxt[u];i;i=Next[i]){
if(i==(f^)||vis[To[i]]==) continue;
treedp(To[i],i);
ans=max(ans,dp[u]+Len[i]+dp[To[i]]);
dp[u]=max(dp[u],dp[To[i]]+Len[i]);
}
}
ll A[maxn],B[maxn],C[maxn],D[maxn];
void solve()
{
ll P=,Mx=;
rep(i,,tot) p[i]=dp[r[i]];
rep(i,,tot){
P+=L[i-];
A[i]=max(A[i-],P+p[i]);
C[i]=max(C[i-],P+p[i]+Mx);
Mx=max(Mx,p[i]-P);
}
P=; Mx=; ll res=C[tot];
for(int i=tot;i>=;i--){
if(i==tot) P=;
else P+=L[i];
B[i]=max(B[i+],P+p[i]);
D[i]=max(D[i+],P+p[i]+Mx);
Mx=max(Mx,p[i]-P);
}
rep(i,,tot-) {
ll tmp=max(max(C[i],D[i+]),A[i]+B[i+]+L[tot]);
res=min(res,tmp);
}
ans=max(ans,res);
}
int main()
{
int N,u,v,w;
scanf("%d",&N);
rep(i,,N) {
scanf("%d%d%d",&u,&v,&w);
add(u,v,w); add(v,u,w);
}
dfs(,);
rep(i,,tot) treedp(r[i],);
solve();
printf("%lld",ans/);
if(ans&) puts(".5");
else puts(".0");
return ;
}

BZOJ - 3242 :快餐店 (基环树DP) 最小化半径的更多相关文章

  1. 基环树DP

    基环树DP Page1:问题 啥是基环树?就是在一棵树上增加一条边. Page2:基环树的几种情况 无向 有向:基环外向树,基环内向树. Page3:处理问题的基本方式 1.断环成树 2.分别处理树和 ...

  2. [CSP-S模拟测试]:卡常题/b(基环树+DP)

    题目描述 $ρ$有一个二分连通无向图,$X$方点.$Y$方点均为$n$个(编号为$1\sim n$).这个二分图比较特殊,每一个$Y$方点的度为$2$,一条黑色边,一条白色边.所有黑色边权值均为$a$ ...

  3. [bzoj2878][Noi2012]迷失游乐园(基环树dp)

    [bzoj2878][Noi2012]迷失游乐园(基环树dp) bzoj luogu 题意:一颗数或是基环树,随机从某个点开始一直走,不走已经到过的点,求无路可走时的路径长期望. 对于一棵树: 用两个 ...

  4. bzoj1791[IOI2008]Island岛屿(基环树+DP)

    题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=1791 题目大意:给你一棵n条边的基环树森林,要你求出所有基环树/树的直径之和.n< ...

  5. 【bzoj1040】[ZJOI2008]骑士 并查集+基环树dp

    题目描述 Z国的骑士团是一个很有势力的组织,帮会中汇聚了来自各地的精英.他们劫富济贫,惩恶扬善,受到社会各界的赞扬.最近发生了一件可怕的事情,邪恶的Y国发动了一场针对Z国的侵略战争.战火绵延五百里,在 ...

  6. BZOJ1040:骑士(基环树DP)

    Z国的骑士团是一个很有势力的组织,帮会中汇聚了来自各地的精英.他们劫富济贫,惩恶扬善,受到社会各界的赞扬.最近发生了一件可怕的事情,邪恶的Y国发动了一场针对Z国的侵略战争.战火绵延五百里,在和平环境中 ...

  7. How Javascript works (Javascript工作原理) (十四) 解析,语法抽象树及最小化解析时间的 5 条小技巧

    个人总结:读完这篇文章需要15分钟,文章介绍了抽象语法树与js引擎解析这些语法树的过程,提到了懒解析——即转换为AST的过程中不直接进入函数体解析,当这个函数体需要执行的时候才进行相应转换.(因为有的 ...

  8. BZOJ3037 创世纪[基环树DP]

    实际上基环树DP的名字是假的.. 这个限制关系可以看成每个点有一条出边,所以就是一个内向基环树森林. 找出每个基环树的环,然后对于树的部分,做DP,设状态选或不选为$f_{x,0/1}$,则 $f_{ ...

  9. [ZJOI2008] 骑士 - 基环树dp

    一类基环树dp都是这个套路吧 随便拆掉环上的一条边 然后跑树形dp,设\(f[i][0/1]\)表示以第\(i\)个人为根的子树,第\(i\)个人选或不选,能收获的最大值 以断点\(u,v\)为根分别 ...

  10. BZOJ3037 创世纪(基环树DP)

    基环树DP,攻的当受的儿子,f表选,g表不选.并查集维护攻受关系.若有环则记录,DP受的后把它当祖宗,再DP攻的. #include <cstdio> #include <iostr ...

随机推荐

  1. Struts2利用iText导出word文档(包含表格)以提供下载

    J2EE ExcelStrutsXML  在公司实习期间,带我的老师让我实现一功能——在显示课表的页面上上点击“导出文件“时能以word文档形式下载课表.将课表导出到excel里的功能他们已经实现了, ...

  2. idea 跳转提示多个实现类

  3. 在Apache中安装php5.6 & php7.3

    1.下载 httpd-2.4.41-win64-VC15.zip.php5.6 +  vc11.  php7.3  + vc14-16 2.配置httpd,在 httpd.conf L180 添加如下 ...

  4. log4net自动删除日志文件

    晚上关于删除的日志文件主要有 https://blog.csdn.net/hellolib/article/details/78316253, 其实我这里的实现方式和他差不多,不过我这里不用配置时间, ...

  5. Cglib 与 JDK动态代理

    作者:xiaolyuh 时间:2019/09/20 09:58 AOP 代理的两种实现: jdk是代理接口,私有方法必然不会存在在接口里,所以就不会被拦截到: cglib是子类,private的方法照 ...

  6. 使用位运算实现int32位 整数的加减乘除

    我觉得比较难想的是加法吧. 首先加法,脑海中脑补二进制加法,相同位相加,超过2 ,则进1,留0 那么用位运算怎么实现呢?其实理解了异或和与操作,就很容易想出来了. 我觉得异或操作和与操作完全就是实现加 ...

  7. java中什么是抽象类(abstract)

    一.什么是抽象类 由abstract修饰的方法叫抽象方法:由abstract修饰的类叫抽象类.抽象的类无法进行实例化,因为他不是具体存在的类,或者说这样的类还不够完善,不能直接使用new关键字调用其构 ...

  8. .net core将URL请求格式化为XML或JSON(网站动态生成sitemap.xml)

    .net core将URL请求格式化为XML或JSON(网站动态生成sitemap.xml) 首先设置 Startup.cs 文件 配置 ConfigureServices services .Add ...

  9. C语言----循环结构1(基础篇五)

    今天更新一个C语言的循环,简单点就是就是我们平时在使用电脑时不停的刷新网页,生活中每天都要吃饭等等就是循环,而编程中也有不断循环的过程,或者遇到符合的条件结束循环 下面进入今天的主题: 需求:用计算机 ...

  10. WebAPI 身份认证解决方案——Phenix.NET企业应用软件快速开发平台.使用指南.21.WebAPI服务(一)

    21   WebAPI服务 ASP.NET Web API,是微软在.NET Framework 4.5上推出的轻量级网络服务框架,虽然作为ASP.NET MVC 4的一部分,但却是一套全新的.独立的 ...