PAC、KNN和GridSearchCV
PCA
PCA主要是用来数据降维,将高纬度的特征映射到低维度,具体可学习线性代数。
这里,我们使用sklearn中的PCA.
from sklearn.decomposition import PCA X = np.array([[-1, -1, 1, -3], [-2, -1, 1, -3], [-3, -2, 1, -3], [1, 1, 1, -3], [2, 1, 1, -3], [3, 2, -1, -3]])
pca = PCA(n_components=4)
pca.fit(X)
print(pca.explained_variance_ratio_) #各成分百分比
print(pca.explained_variance_) #各成分值 pca = PCA(n_components=1) #原来是4维,现在降至1维
XX = pca.fit_transform(X)
print(XX)
结果:
[0.94789175 0.04522847 0.00687978 0. ]
[8.21506183 0.39198011 0.05962472 0. ]
[[-1.42149543]
[-2.2448796 ]
[-3.60382274]
[ 1.29639085]
[ 2.11977502]
[ 3.85403189]]
其实,直接看数据也能发现。例如,最后一维没变化所以百分比为0,倒数第二维只有一点点变化所以百分比也很小,它们对结果的影响很小,在降维时可以去掉。
KNN
- 计算出样本数据和待分类数据的距离;
- 为待分类数据选择K个与其距离最小的样本;
- 统计出K个样本中大多数样本所属的分类;
- 这个分类就是待分类数据所属的分类。
classifier = KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski',
metric_params=None, n_jobs=1, n_neighbors=10, p=2,
weights='uniform')
超参数需要自己尝试。
其他
from sklearn.neighbors import KNeighborsClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.ensemble import RandomForestClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.svm import SVC
from sklearn.naive_bayes import GaussianNB
from sklearn import metrics classifier = LogisticRegression(random_state = 0) #0.78
#classifier = KNeighborsClassifier(algorithm='kd_tree',n_neighbors = 5, metric = 'minkowski', p = 2, weights='uniform') #0.839
#classifier = SVC(kernel = 'linear', random_state = 0) #0.81
#classifier = SVC(kernel = 'rbf', random_state = 0) #0.77
#classifier = GaussianNB() #0.77
#classifier = DecisionTreeClassifier(criterion = 'entropy', random_state = 0) #0.64
#classifier = RandomForestClassifier(n_estimators = 10, criterion = 'entropy', random_state = 0) #0.83
classifier.fit(X_stard, Y_stard)
YY_pred = classifier.predict(X_pred)
result_NMI=metrics.normalized_mutual_info_score(YY_pred, Y_pred)
print("result_NMI:",result_NMI) #3,1,minkowski 3,1,manhattan
GridSearchCV寻找超参数
sklearn调参有一个工具gridsearchcv,它存在的意义就是自动调参,只要把参数输进去,就可以对算法进行相应的调优,找到合适的参数。
### KNN
from sklearn.neighbors import KNeighborsClassifier
from sklearn.model_selection import GridSearchCV clf = KNeighborsClassifier()
n_neighbors = list(range(1,10))
weights = ['uniform','distance']
algorithm_options = ['auto','ball_tree','kd_tree','brute']
leaf_range = list(range(1,10))
p = list(range(1,10))
param_grid = [{'n_neighbors': n_neighbors, 'weights': weights, 'algorithm': algorithm_options, 'leaf_size': leaf_range, 'p':p}]
grid_search = GridSearchCV(clf, param_grid=param_grid, cv=10)
grid_search.fit(X_pred, Y_pred)
grid_search.best_score_, grid_search.best_estimator_, grid_search.best_params_
结果:
(0.9675572519083969,
KNeighborsClassifier(algorithm='auto', leaf_size=1, metric='minkowski',
metric_params=None, n_jobs=None, n_neighbors=7, p=2,
weights='uniform'),
{'algorithm': 'auto',
'leaf_size': 1,
'n_neighbors': 7,
'p': 2,
'weights': 'uniform'})
参考链接:
1. https://blog.csdn.net/puredreammer/article/details/52255025
2. https://www.makcyun.top/2019/06/15/Machine_learning08.html
3. https://blog.csdn.net/szj_huhu/article/details/74909773
4. https://www.zybuluo.com/spiritnotes/note/295894
PAC、KNN和GridSearchCV的更多相关文章
- 室内定位系列(三)——位置指纹法的实现(KNN)
位置指纹法中最常用的算法是k最近邻(kNN):选取与当前RSS最邻近的k个指纹的位置估计当前位置,简单直观有效.本文介绍kNN用于定位的基本原理与具体实现(matlab.python). 基本原理 位 ...
- 使用PCA + KNN对MNIST数据集进行手写数字识别
首先引入需要的包 %matplotlib inline import numpy as np import scipy as sp import pandas as pd import matplot ...
- KNN算法的实现
K近邻(KNN)算法简介 KNN是通过测量不同特征值之间的距离进行分类.它的思路是:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别,其 ...
- 美团店铺评价语言处理以及分类(tfidf,SVM,决策树,随机森林,Knn,ensemble)
第一篇 数据清洗与分析部分 第二篇 可视化部分, 第三篇 朴素贝叶斯文本分类 支持向量机分类 支持向量机 网格搜索 临近法 决策树 随机森林 bagging方法 import pandas as pd ...
- k近邻算法(KNN)
k近邻算法(KNN) 定义:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别. from sklearn.model_selection ...
- 吴裕雄 数据挖掘与分析案例实战(10)——KNN模型的应用
# 导入第三方包import pandas as pd # 导入数据Knowledge = pd.read_excel(r'F:\\python_Data_analysis_and_mining\\1 ...
- 如何利用AI识别未知——加入未知类(不太靠谱),检测待识别数据和已知样本数据的匹配程度(例如使用CNN降维,再用knn类似距离来实现),将问题转化为特征搜索问题而非决策问题,使用HTM算法(记忆+模式匹配预测就是智能),GAN异常检测,RBF
https://www.researchgate.net/post/How_to_determine_unknown_class_using_neural_network 里面有讨论,说是用rbf神经 ...
- GridSearchCV和RandomizedSearchCV调参
1 GridSearchCV实际上可以看做是for循环输入一组参数后再比较哪种情况下最优. 使用GirdSearchCV模板 # Use scikit-learn to grid search the ...
- 机器学习 第5篇:knn回归
基于最邻近算法的分类,本质上是对离散的数据标签进行预测,实际上,最邻近算法也可以用于对连续的数据标签进行预测,这种方法叫做基于最邻近数据的回归,预测的值(即数据的标签)是连续值,通过计算数据点最临近数 ...
随机推荐
- Elasticsearch由浅入深(十一)索引管理
索引的基本操作 创建索引 PUT /{index} { "settings": {}, "mappings": { "properties" ...
- tomcat启动项目报404错误
1.请求的时候报404错误,而且我的请求API地址是/account/sendSmsCode,从后台获取到的竟然变成了/account/account/sendSmsCode. 2.后来发现是 ...
- 常用mysql系统表及命令
常用系统表查看当前数据库连接ip信息– select * from information_schema.PROCESSLIST 当前mysql实例中所有数据库的信息– select * from i ...
- 笔记本CPU性能排行
截图如下: 1. 图1 2. 图2 3. 4. 5. 6. 7. 8. 谢谢浏览!
- 错误:error: failed to push some refs to 'https://github.com/pzq7025/KG.git'的解决办法
一.问题在进行[git push orgin master]的时候出现如下错误 ! [rejected] master -> master (non-fast-forward) error: f ...
- dedecms5.7执行PHP代码的用法
dedecms5.7执行PHP代码的用法 {dede:php} echo 'test'; {/dede:php}
- 【05】C#特有的ref、out参数
java和C#非常相似,它们大部分的语法是一样的,但尽管如此,也有一些地方是不同的. 为了更好地学习java或C#,有必要分清它们两者到底在哪里不同. 我们这次要来探讨C#特有的ref.out参数. ...
- vb Replace 实现
今天改一个VB程序时发现程序自带的replace 函数不知什么原因竟然不好用了 所以就自己写了一个玩玩 记录一下 'XGZ '替换字符 Private Function Replace1(ByVal ...
- C#中字符串的操作大全
一.C#中字符串的建立过程 例如定义变量 strT="Welcome to "; strT+="www.cuit.edu.cn"; 程序首先创建一个System ...
- Razor Page中的AJAX
1.由于Razor Pages自带提供防伪令牌/验证,用来防止跨站点请求伪造(称为XSRF或CSRF),所以和MVC框架中API使用方式有稍许的不同. 2.所以在我们使用Razor Pages中的fo ...