【BZOJ1497】【NOI2006】最大获利(网络流)

题面

BZOJ

Description

新的技术正冲击着手机通讯市场,对于各大运营商来说,这既是机遇,更是挑战。THU集团旗下的CS&T通讯公司在新一代通讯技术血战的前夜,需要做太多的准备工作,仅就站址选择一项,就需要完成前期市场研究、站址勘测、最优化等项目。在前期市场调查和站址勘测之后,公司得到了一共N个可以作为通讯信号中转站的地址,而由于这些地址的地理位置差异,在不同的地方建造通讯中转站需要投入的成本也是不一样的,所幸在前期调查之后这些都是已知数据:建立第i个通讯中转站需要的成本为Pi(1≤i≤N)。另外公司调查得出了所有期望中的用户群,一共M个。关于第i个用户群的信息概括为Ai, Bi和Ci:这些用户会使用中转站Ai和中转站Bi进行通讯,公司可以获益Ci。(1≤i≤M, 1≤Ai, Bi≤N) THU集团的CS&T公司可以有选择的建立一些中转站(投入成本),为一些用户提供服务并获得收益(获益之和)。那么如何选择最终建立的中转站才能让公司的净获利最大呢?(净获利 = 获益之和 - 投入成本之和)

Input

输入文件中第一行有两个正整数N和M 。第二行中有N个整数描述每一个通讯中转站的建立成本,依次为P1, P2, …, PN 。以下M行,第(i + 2)行的三个数Ai, Bi和Ci描述第i个用户群的信息。所有变量的含义可以参见题目描述。

Output

你的程序只要向输出文件输出一个整数,表示公司可以得到的最大净获利。

Sample Input

5 5

1 2 3 4 5

1 2 3

2 3 4

1 3 3

1 4 2

4 5 3

Sample Output

4

HINT

【样例说明】选择建立1、2、3号中转站,则需要投入成本6,获利为10,因此得到最大收益4。【评分方法】本题没有部分分,你的程序的输出只有和我们的答案完全一致才能获得满分,否则不得分。【数据规模和约定】 80%的数据中:N≤200,M≤1 000。 100%的数据中:N≤5 000,M≤50 000,0≤Ci≤100,0≤Pi≤100。

题解

将最大获利转换为最小损失,

考虑最小割

不妨设源点为这个用户不需要,汇点为这个用户需要

如果一个用户需要,那么它与汇点的边不会隔开,它与中转站的边不能割开

所以,对于每个用户,由中转站连接容量为\(inf\)的边。

如果一个用户被选择了,证明这个用户连接的中转站被选择了

此时会产生损失,为建设中转站的费用

因此,源点向中转站连接容量为费用的边

同时,如果一个用户不被选择,那么,它和汇点的边会被隔开

因此,从用户向汇点连接容量为价值的边

最终的答案显然就是所有用户价值的和减去最小割

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
#include<map>
#include<vector>
#include<queue>
using namespace std;
#define ll long long
#define RG register
#define INF 1000000000
#define MAX 55555
inline int read()
{
RG int x=0,t=1;RG char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=-1,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return x*t;
}
int n,m,ans;
int h[MAX<<1],cnt=2;
int level[MAX<<1];
int S,T;
struct Line{int v,next,w;}e[MAX*10];
void Add(int u,int v,int w)
{
e[cnt]=(Line){v,h[u],w};h[u]=cnt++;
e[cnt]=(Line){u,h[v],0};h[v]=cnt++;
}
bool bfs()
{
memset(level,0,sizeof(level));level[S]=1;
queue<int> Q;Q.push(S);
while(!Q.empty())
{
int u=Q.front();Q.pop();
for(int i=h[u];i;i=e[i].next)
{
int v=e[i].v;
if(e[i].w&&!level[v])
level[v]=level[u]+1,Q.push(v);
}
}
return level[T];
}
int DFS(int u,int flow)
{
if(!flow||u==T)return flow;
int ret=0;
for(int i=h[u];i;i=e[i].next)
{
int v=e[i].v;
if(e[i].w&&level[v]==level[u]+1)
{
int d=DFS(v,min(flow,e[i].w));
flow-=d;ret+=d;
e[i].w-=d;e[i^1].w+=d;
}
}
if(!ret)level[u]=0;
return ret;
}
int Dinic()
{
int ret=0;
while(bfs())ret+=DFS(S,INF);
return ret;
}
int main()
{
n=read();m=read();
S=0;T=n+m+1;
for(int i=1;i<=n;++i)Add(S,i,read());
for(int i=1;i<=m;++i)
{
int a=read(),b=read(),c=read();
ans+=c;
Add(a,n+i,INF);Add(b,n+i,INF);
Add(n+i,T,c);
}
printf("%d\n",ans-Dinic());
return 0;
}

【BZOJ1497】【NOI2006】最大获利(网络流)的更多相关文章

  1. BZOJ1497 [NOI2006]最大获利 网络流 最小割 SAP

    原文链接http://www.cnblogs.com/zhouzhendong/p/8371052.html 题目传送门 - BZOJ1497 题意概括 有n个站要被建立. 建立第i个站的花费为pi. ...

  2. bzoj1497: [NOI2006]最大获利(最大权闭合子图)

    1497: [NOI2006]最大获利 题目:传送门 题解: %%%关于最大权闭合子图很好的入门题 简单说一下什么叫最大权闭合子图吧...最简单的解释就是正权边连源点,负权边连汇点(注意把边权改为正数 ...

  3. BZOJ1497: [NOI2006]最大获利[最小割 最大闭合子图]

    1497: [NOI2006]最大获利 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 4375  Solved: 2142[Submit][Status] ...

  4. BZOJ 1497 [NOI2006]最大获利

    1497: [NOI2006]最大获利 Description 新的技术正冲击着手机通讯市场,对于各大运营商来说,这既是机遇,更是挑战.THU集团旗下的CS&T通讯公司在新一代通讯技术血战的前 ...

  5. [bzoj1497][NOI2006]最大获利_网络流_最小割

    最大获利 bzoj-1497 题目大意:可以建立一个点,花费一定的代价:将已经建立的两个点之间连边,得到一定收益.有些节点之间是不允许连边的. 注释:1<=点数<=5,000,1<= ...

  6. Bzoj1497 [NOI2006]最大获利

    Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 4449  Solved: 2181 Description 新的技术正冲击着手机通讯市场,对于各大运营商来 ...

  7. BZOJ 1497 JZYZOJ 1344 [NOI2006]最大获利 网络流 最大权闭合图

    http://www.lydsy.com/JudgeOnline/problem.php?id=1497 http://172.20.6.3/Problem_Show.asp?id=1344   思路 ...

  8. BZOJ 1497 [NOI2006]最大获利 ——网络流

    [题目分析] 最大权闭合子图. S到集合1容量为获利的大小,集合2到T为所需要付出的相反数. 然后求出最大流,然后用总的获利相减即可. [代码] #include <cstdio> #in ...

  9. BZOJ1497[NOI2006]最大获利——最大权闭合子图

    题目描述 新的技术正冲击着手机通讯市场,对于各大运营商来说,这既是机遇,更是挑战.THU集团旗下的CS&T通讯公司在新一代通讯技术血战的前夜,需要做太多的准备工作,仅就站址选择一项,就需要完成 ...

  10. 【最大权闭合子图】BZOJ1497[NOI2006]-最大获利

    [题目大意] 建立第i个通讯中转站需要的成本为Pi(1≤i≤N).另外公司调查得出了所有期望中的用户群,一共M个.关于第i个用户群的信息概括为Ai, Bi和Ci:这些用户会使用中转站Ai和中转站Bi进 ...

随机推荐

  1. Mysql 开启Federated引擎的方法

    原文参考:http://www.thinksaas.cn/topics/0/63/63532.html 进入mysql命令行,没有看到Federated,说明没有安装 mysql>show en ...

  2. Python运维三十六式:用Python写一个简单的监控系统

    市面上有很多开源的监控系统:Cacti.Nagios.Zabbix.感觉都不符合我的需求,为什么不自己做一个呢? 用Python两个小时徒手撸了一个简易的监控系统,给大家分享一下,希望能对大家有所启发 ...

  3. SQL创建数据库、建表、填入内容

    --创建数据库 create database Information go --使用数据库 use Information go --创建表 create table Student ( Sno ) ...

  4. JS 判断checkbox 是否选中

    <input type="checkbox" id="IsEnable" /> 在调试的时候,会出现,一直未true的状态,不管是选中还是未选中 解 ...

  5. [.NET] 使用HttpClient操作HFS (HTTP File Server)

    前言 本篇文章介绍如何使用HttpClient操作HFS (HTTP File Server),为自己留个纪录也希望能帮助到有需要的开发人员.关于HTTP File Server的介绍.安装.设定,可 ...

  6. Python爬虫初探 - selenium+beautifulsoup4+chromedriver爬取需要登录的网页信息

    目标 之前的自动答复机器人需要从一个内部网页上获取的消息用于回复一些问题,但是没有对应的查询api,于是想到了用脚本模拟浏览器访问网站爬取内容返回给用户.详细介绍了第一次探索python爬虫的坑. 准 ...

  7. Phaser3 场景Scene之间的传值 -- HTML JAVASCRIPT 网页游戏开发

      PHASERJS3 一.首先当然得有至少有二个场景sceneA.js,sceneB.js 二.从场景A传值到场景B二种方法 1)通过事件this.events.emit('event key',{ ...

  8. 这才是球王应有的技艺,他就是C罗

    四年一度的世界杯在本周四拉开了帷幕,俄罗斯以5:0碾压沙特阿拉伯,让我们惊呼战斗名族的强大,其后的摩洛哥VS伊朗,摩洛哥前锋布哈杜兹将足球顶入自家球门,这......咳,咳,本来是为了解围,没想到成就 ...

  9. 使用Firebug或chrome-devToolBar深入学习javascript语言核心

    使用Firebug和chrome-devToolBar调试页面样式或脚本是前端开发每天必做之事.这个开发神器到底能给我们带来哪些更神奇的帮助呢?这几天看的一些资料中给了我启发,能不通过Firebug和 ...

  10. Java Monitoring&Troubleshooting Tools

    JDK Tools and Utilities Monitoring Tools You can use the following tools to monitor JVM performance ...