题目描述

给定一个 $n\times m$ 的方格图,每个格子有 ↑、↓、←、→,表示从该格子能够走到相邻的哪个格子。
有一些格子是空着的,需要填上四者之一,需要满足:最终的方格图中,从任意一个位置出发都能够走出方格图。求方案数 mod 10^9+7。

$数据组数\le 10$ ,$n,m\le 300$ ,$空格子数k\le 200$


题解

并查集+矩阵树定理

由于k很小,又是计数问题,考虑矩阵树定理。

先使用并查集处理出从每个位置开始,最终会走到哪个位置。显然如果有环则答案为0,否则一定走到的是一个空格子或方格图外部。

这样就不用考虑已填好的格子的走法,只需要考虑空格子的走法即可。

每个空格子需要走到方格图外部,不能有环,相当于是一棵以方格图外部为根的内向树形图。

考虑每个空格子4个方向会走到哪个空格子(或外部),连边,矩阵树定理求解即可。

本题要求的是内向树,因此求 出度矩阵-邻接矩阵 删去根节点所在行列,得到的行列式的值 即可。

时间复杂度 $O(nm+k^3)$

#include <cstdio>
#include <cstring>
#include <algorithm>
#define mod 1000000007
using namespace std;
typedef long long ll;
int id[210][210] , f[40010] , flag , v[40010] , wx[310] , wy[310];
ll a[310][310];
char str[210];
inline ll pow(ll x , int y)
{
ll ans = 1;
while(y)
{
if(y & 1) ans = ans * x % mod;
x = x * x % mod , y >>= 1;
}
return ans;
}
int find(int x)
{
return x == f[x] ? x : f[x] = find(f[x]);
}
inline void link(int x , int y)
{
x = find(x) , y = find(y);
if(x == y) flag = 1;
f[x] = y;
}
int main()
{
int T;
scanf("%d" , &T);
while(T -- )
{
int n , m , p = 0 , i , j , k , d = 0;
ll t , ans = 1;
scanf("%d%d" , &n , &m);
memset(id , 0 , sizeof(id)) , flag = 0;
for(i = 1 ; i <= n ; i ++ )
for(j = 1 ; j <= m ; j ++ )
id[i][j] = (i - 1) * m + j;
for(i = 0 ; i <= n * m ; i ++ ) f[i] = i;
for(i = 1 ; i <= n ; i ++ )
{
scanf("%s" , str + 1);
for(j = 1 ; j <= m ; j ++ )
{
switch(str[j])
{
case 'L': link(id[i][j] , id[i][j - 1]); break;
case 'R': link(id[i][j] , id[i][j + 1]); break;
case 'U': link(id[i][j] , id[i - 1][j]); break;
case 'D': link(id[i][j] , id[i + 1][j]); break;
default: v[id[i][j]] = ++p , wx[p] = i , wy[p] = j;
}
}
}
if(flag) puts("0");
else
{
memset(a , 0 , sizeof(a));
for(i = 1 ; i <= p ; i ++ )
{
a[i][i] += 4;
a[i][v[find(id[wx[i]][wy[i] - 1])]] -- ;
a[i][v[find(id[wx[i]][wy[i] + 1])]] -- ;
a[i][v[find(id[wx[i] - 1][wy[i]])]] -- ;
a[i][v[find(id[wx[i] + 1][wy[i]])]] -- ;
}
for(i = 1 ; i <= p ; i ++ )
for(j = 1 ; j <= p ; j ++ )
a[i][j] = (a[i][j] + mod) % mod;
for(i = 1 ; i <= p ; i ++ )
{
for(j = i ; j <= p ; j ++ )
if(a[i][j])
break;
if(j > p) continue;
if(j != i)
{
d ^= 1;
for(k = i ; k <= p ; k ++ )
swap(a[i][k] , a[j][k]);
}
ans = ans * a[i][i] % mod;
t = pow(a[i][i] , mod - 2);
for(j = i ; j <= p ; j ++ ) a[i][j] = a[i][j] * t % mod;
for(j = i + 1 ; j <= p ; j ++ )
for(t = a[j][i] , k = i ; k <= p ; k ++ )
a[j][k] = (a[j][k] - a[i][k] * t % mod + mod) % mod;
}
for(i = 1 ; i <= p ; i ++ ) ans = ans * a[i][i] % mod;
if(d) ans = (mod - ans) % mod;
printf("%lld\n" , ans);
}
}
return 0;
}

【bzoj5133】[CodePlus2017年12月]白金元首与独舞 并查集+矩阵树定理的更多相关文章

  1. [BZOJ5133][CodePlus2017年12月]白金元首与独舞

    bzoj luogu 题意 给你一个\(n*m\)的网格,每个位置上有一个箭头指向上或下或左或右.有些位置上还没有箭头,现在要求你在这些没有箭头的位置上填入箭头,使得从网格的任意一个位置开始,都可以沿 ...

  2. 【BZOJ5133】[CodePlus2017年12月]白金元首与独舞 矩阵树定理

    [BZOJ5133][CodePlus2017年12月]白金元首与独舞 题面:www.lydsy.com/JudgeOnline/upload/201712/div1.pdf 题解:由于k很小,考虑用 ...

  3. [LOJ#6259]「CodePlus 2017 12 月赛」白金元首与独舞

    [LOJ#6259]「CodePlus 2017 12 月赛」白金元首与独舞 试题描述 到河北省 见斯大林 / 在月光下 你的背影 / 让我们一起跳舞吧 うそだよ~ 河北省怎么可能有 Stalin. ...

  4. BZOJ5131: [CodePlus2017年12月]可做题2

    BZOJ没有题面,差评 洛谷的题目链接 题解 其实这题很久之前就写了,也想写个题解但是太懒了,咕到了今天 在typora写完题解不想copy过来再改格式了,于是直接贴截图qwq #include &l ...

  5. 【LibreOJ】#6259. 「CodePlus 2017 12 月赛」白金元首与独舞

    [题目]给定n行m列的矩阵,每个位置有一个指示方向(上下左右)或没有指示方向(任意选择),要求给未定格(没有指示方向的位置)确定方向,使得从任意一个开始走都可以都出矩阵,求方案数.n,m<=20 ...

  6. 「CodePlus 2017 12 月赛」白金元首与独舞

    description 题面 data range \[ 1 \leq T \leq 10, 1 \leq n, m \leq 200 , 0 \leq k \leq \min(nm, 300)\] ...

  7. 走进矩阵树定理--「CodePlus 2017 12 月赛」白金元首与独舞

    n,m<=200,n*m的方阵,有ULRD表示在这个格子时下一步要走到哪里,有一些待决策的格子用.表示,可以填ULRD任意一个,问有多少种填法使得从每个格子出发都能走出这个方阵,答案取模.保证未 ...

  8. loj6259「CodePlus 2017 12 月赛」白金元首与独舞

    分析 我们将没连的点连向周围四个点 其余的按照给定的方向连 我们将所有连出去的位置统一连到0点上 再以0作为树根 于是就将问题转化为了有向图内向树计数 代码 #include<iostream& ...

  9. Solution -「Code+#2」「洛谷 P4033」白金元首与独舞

    \(\mathcal{Description}\)   link.   给定一个 \(n\times m\) 的网格图,一些格子指定了走出该格的方向(上下左右),而有 \(k\) 格可以任意指定走出方 ...

随机推荐

  1. SPOJ11469 SUBSET

    题面 Farmer John's owns N cows (2 <= N <= 20), where cow i produces M(i) units of milk each day ...

  2. (转) PHP 开发者该知道的 5 个 Composer 小技巧

    1. 仅更新单个库 只想更新某个特定的库,不想更新它的所有依赖,很简单: composer update foo/bar 此外,这个技巧还可以用来解决“警告信息问题”.你一定见过这样的警告信息: Wa ...

  3. STM32L476的RTC使用问题记录

    1. 在使用RTC的时间戳,从字面意思是,PC13的上升沿可以触发时间戳的中断函数 /*##-1- Configure the Time Stamp peripheral ############## ...

  4. 搜索引擎ElasticSearch系列(三): ElasticSearch2.4.4 bigdesk插件安装

    一:ElasticSearch bigdesk插件简介 bigdesk是elasticsearch的一个集群监控工具,可以通过它来查看es集群的各种状态,如:cpu.内存使用情况,索引数据.搜索情况, ...

  5. 详细讲解 A/B 测试关键步骤,快来检查下还有哪些疏漏的知识点

    作为一种对照实验方法,A/B 测试通过比较两个 (或多个) 不同版本之间的差异来验证假设是否正确.该方法将特定测试组从实验其余部分中独立出来,从而得出可靠结果.在被测人不知情且测试场景真实的情况下,A ...

  6. HTTP协议请求信息详解

    通常HTTP消息包括客户机向服务器的请求消息和服务器向客户机的响应消息.客户端向服务器发送一个请求,请求头包含请求的方法.URI.协议版本.以及包含请求修饰符.客户信息和内容的类似于MIME的消息结构 ...

  7. 如何通俗理解贝叶斯推断与beta分布?

    有一枚硬币(不知道它是否公平),假如抛了三次,三次都是“花”: 能够说明它两面都是“花”吗? 1 贝叶斯推断 按照传统的算法,抛了三次得到三次“花”,那么“花”的概率应该是: 但是抛三次实在太少了,完 ...

  8. 二分图最大匹配模版 m√(n) 复杂度

    周大爷在比赛中搜到的黑科技二分图模版,复杂度为m√(n): 注意:点的序号要从0开始! 需要把nx,ny都赋值为n(点数) ; *; struct Edge { int v; int next; } ...

  9. 5.airflow问题

    1. Traceback (most recent call last): File "/usr/bin/airflow", line 28, in <module> ...

  10. KMP---POJ 3461 Oulipo

    Description The French author Georges Perec (1936–1982) once wrote a book, La disparition, without t ...