tensorflow中使用mnist数据集训练全连接神经网络

——学习曹健老师“人工智能实践:tensorflow笔记”的学习笔记, 感谢曹老师

前期准备:mnist数据集下载,并存入data目录:

文件列表:四个文件,分别为训练和测试集数据

Four files are available on 官网  http://yann.lecun.com/exdb/mnist/ :

train-images-idx3-ubyte.gz:  training set images (9912422 bytes)
train-labels-idx1-ubyte.gz
training set labels (28881 bytes)


t10k-images-idx3-ubyte.gz:  
test set images (1648877 bytes)


t10k-labels-idx1-ubyte.gz:  
test set labels (4542 bytes)

一、主要思路:

1、训练集输入数据X为28×28图像,和 Y_  onehot label

2、构建一个三层NN,input layer,one hidden layer,outputlayer

3、使用指数衰减学习率,交叉熵loss,移动平均loss构建NN

二、主要代码:

forward构建:

//mnist_forward.py

import tensorflow as tf
INPUT_NODE = 784
OUTPUT_NODE = 10
LAYER1_NODE = 500

def get_weight(shape, regularizer):
    w = tf.Variable(tf.truncated_normal(shape, stddev=0.1))
    if regularizer != None:
        tf.add_to_collection('losses', tf.contrib.layers.l2_regularizer(regularizer)(w))
    return w

def get_bias(shape):
    b = tf.Variable(tf.zeros(shape))
    return b

def forward(x,regularizer):
    w1 = get_weight([INPUT_NODE, LAYER1_NODE], regularizer)
    b1 = get_bias([LAYER1_NODE])
    y1 = tf.nn.relu(tf.matmul(x, w1) + b1)

w2 = get_weight([LAYER1_NODE, OUTPUT_NODE], regularizer)
    b2 = get_bias([OUTPUT_NODE])
    y = tf.matmul(y1, w2) + b2
    return y

backward构建:

//mnist_backward.py

import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
import mnist_forward
import os

BATCH_SIZE = 200
LEARNING_RATE_BASE = 0.1
LEARNING_RATE_DECAY = 0.99
REGULARIZER = 0.0001
STEPS = 50000
MOVING_AVERAGE_DECAY = 0.99
MODEL_SAVE_PATH = "./model/"
MODEL_NAME = "mnist_model"

def backward(mnist):
    x = tf.placeholder(tf.float32, [None, mnist_forward.INPUT_NODE])
    y_ = tf.placeholder(tf.float32, [None, mnist_forward.OUTPUT_NODE])
    y = mnist_forward.forward(x, REGULARIZER)
    global_step = tf.Variable(0, trainable=False)

ce = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=y, labels=tf.argmax(y_,1))
    cem = tf.reduce_mean(ce)
    loss = cem + tf.add_n(tf.get_collection('losses'))

learning_rate = tf.train.exponential_decay(
            LEARNING_RATE_BASE,
            global_step,
            mnist.train.num_examples / BATCH_SIZE,
            LEARNING_RATE_DECAY,
            staircase = True
            )

train_step = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss, global_step = global_step)
    ema = tf.train.ExponentialMovingAverage(MOVING_AVERAGE_DECAY, global_step)
    ema_op = ema.apply(tf.trainable_variables())
    with tf.control_dependencies([train_step, ema_op]):
        train_op = tf.no_op(name='train')

saver = tf.train.Saver()
    with tf.Session() as sess:
        init_op = tf.global_variables_initializer()
   sess.run(init_op)

for i in range(STEPS):
            xs, ys = mnist.train.next_batch(BATCH_SIZE)
            _, loss_value, step = sess.run([train_op, loss, global_step], feed_dict={x: xs, y_: ys})
            if i % 1000 ==0:
                print("After %d training step(s), loss on training batch is %g." % (step, loss_value))
                saver.save(sess, os.path.join(MODEL_SAVE_PATH, MODEL_NAME), global_step = global_step)

def main():
    mnist = input_data.read_data_sets("./data/", one_hot = True)
    backward(mnist)

if __name__ == '__main__':
    main()

tensorflow中使用mnist数据集训练全连接神经网络-学习笔记的更多相关文章

  1. 【TensorFlow/简单网络】MNIST数据集-softmax、全连接神经网络,卷积神经网络模型

    初学tensorflow,参考了以下几篇博客: soft模型 tensorflow构建全连接神经网络 tensorflow构建卷积神经网络 tensorflow构建卷积神经网络 tensorflow构 ...

  2. 深度学习tensorflow实战笔记(1)全连接神经网络(FCN)训练自己的数据(从txt文件中读取)

    1.准备数据 把数据放进txt文件中(数据量大的话,就写一段程序自己把数据自动的写入txt文件中,任何语言都能实现),数据之间用逗号隔开,最后一列标注数据的标签(用于分类),比如0,1.每一行表示一个 ...

  3. TensorFlow之DNN(二):全连接神经网络的加速技巧(Xavier初始化、Adam、Batch Norm、学习率衰减与梯度截断)

    在上一篇博客<TensorFlow之DNN(一):构建“裸机版”全连接神经网络>中,我整理了一个用TensorFlow实现的简单全连接神经网络模型,没有运用加速技巧(小批量梯度下降不算哦) ...

  4. TensorFlow之DNN(一):构建“裸机版”全连接神经网络

    博客断更了一周,干啥去了?想做个聊天机器人出来,去看教程了,然后大受打击,哭着回来补TensorFlow和自然语言处理的基础了.本来如意算盘打得挺响,作为一个初学者,直接看项目(不是指MINIST手写 ...

  5. Tensorflow 多层全连接神经网络

    本节涉及: 身份证问题 单层网络的模型 多层全连接神经网络 激活函数 tanh 身份证问题新模型的代码实现 模型的优化 一.身份证问题 身份证号码是18位的数字[此处暂不考虑字母的情况],身份证倒数第 ...

  6. MINIST深度学习识别:python全连接神经网络和pytorch LeNet CNN网络训练实现及比较(三)

    版权声明:本文为博主原创文章,欢迎转载,并请注明出处.联系方式:460356155@qq.com 在前两篇文章MINIST深度学习识别:python全连接神经网络和pytorch LeNet CNN网 ...

  7. Caffe系列4——基于Caffe的MNIST数据集训练与测试(手把手教你使用Lenet识别手写字体)

    基于Caffe的MNIST数据集训练与测试 原创:转载请注明https://www.cnblogs.com/xiaoboge/p/10688926.html  摘要 在前面的博文中,我详细介绍了Caf ...

  8. tensorflow读取本地MNIST数据集

    tensorflow读取本地MNIST数据集 数据放入文件夹(不要解压gz): >>> import tensorflow as tf >>> from tenso ...

  9. Keras入门——(1)全连接神经网络FCN

    Anaconda安装Keras: conda install keras 安装完成: 在Jupyter Notebook中新建并执行代码: import keras from keras.datase ...

随机推荐

  1. vue中监听页面滚动和监听某元素滚动

    ①监听页面滚动 在生命周期mounted中进行监听滚动: mounted () { window.addEventListener('scroll', this.scrollToTop) }, 在方法 ...

  2. java SSM 框架 多数据源 代码生成器 websocket即时通讯 shiro redis 后台框架源码

    A 调用摄像头拍照,自定义裁剪编辑头像 [新录针对本系统的视频教程,手把手教开发一个模块,快速掌握本系统]B 集成代码生成器 [正反双向](单表.主表.明细表.树形表,开发利器)+快速构建表单;  技 ...

  3. Android 心跳呼吸动画

    废话少说,看东西 一个很简单的心跳呼吸的动画,几行代码搞定: 代码: private ImageView ivHart; //图片 AlphaAnimation alphaAnimation = nu ...

  4. macOS:按钮类型

    for (int i = 0; i < 10; i++) { for (int j = 1; j < 16; j++) { NSButton *btn = [[NSButton alloc ...

  5. Maven 逆向工程

    pom.xml <build> <plugins> <plugin> <groupId>org.mybatis.generator</groupI ...

  6. Docker安装(yum方式 centos7)

    yum install -y yum-utils device-mapper-persistent-data lvm2   yum-config-manager --add-repo http://m ...

  7. 【vue】------浅谈vue------【William】

    ### Vue > Vue是一个前端js框架,由尤雨溪开发,是个人项目 Vue近几年来特别的受关注,三年前的时候angularJS霸占前端JS框架市场很长时间,接着react框架横空出世,因为它 ...

  8. php 实现重定向的三种方式

    header()函数; header('location:http://www.baidu.com'); meta标签; echo '<meta http-equiv="refresh ...

  9. jdbc之存储过程的调用和调用方法

    调用存储过程 调用存储过程的sql语句 {call 过程名称(参数列表)} conn = DbUtils.getConnection(); sql = "{call p_order_appr ...

  10. git如何到精通

    git教程   目录 一.版本控制概要 1.1.什么是版本控制 1.2.常用术语 1.3.常见的版本控制器 1.4.版本控制分类 1.4.1.本地版本控制 1.4.2.集中版本控制 1.4.3.分布式 ...