tensorflow中使用mnist数据集训练全连接神经网络-学习笔记
tensorflow中使用mnist数据集训练全连接神经网络
——学习曹健老师“人工智能实践:tensorflow笔记”的学习笔记, 感谢曹老师
前期准备:mnist数据集下载,并存入data目录:
文件列表:四个文件,分别为训练和测试集数据
Four files are available on 官网 http://yann.lecun.com/exdb/mnist/ :
train-images-idx3-ubyte.gz: training set images (9912422 bytes)
train-labels-idx1-ubyte.gz:
training set labels (28881 bytes)
t10k-images-idx3-ubyte.gz:
test set images (1648877 bytes)
t10k-labels-idx1-ubyte.gz:
test set labels (4542 bytes)
一、主要思路:
1、训练集输入数据X为28×28图像,和 Y_ onehot label
2、构建一个三层NN,input layer,one hidden layer,outputlayer
3、使用指数衰减学习率,交叉熵loss,移动平均loss构建NN
二、主要代码:
forward构建:
//mnist_forward.py
import tensorflow as tf
INPUT_NODE = 784
OUTPUT_NODE = 10
LAYER1_NODE = 500
def get_weight(shape, regularizer):
w = tf.Variable(tf.truncated_normal(shape, stddev=0.1))
if regularizer != None:
tf.add_to_collection('losses', tf.contrib.layers.l2_regularizer(regularizer)(w))
return w
def get_bias(shape):
b = tf.Variable(tf.zeros(shape))
return b
def forward(x,regularizer):
w1 = get_weight([INPUT_NODE, LAYER1_NODE], regularizer)
b1 = get_bias([LAYER1_NODE])
y1 = tf.nn.relu(tf.matmul(x, w1) + b1)
w2 = get_weight([LAYER1_NODE, OUTPUT_NODE], regularizer)
b2 = get_bias([OUTPUT_NODE])
y = tf.matmul(y1, w2) + b2
return y
backward构建:
//mnist_backward.py
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
import mnist_forward
import os
BATCH_SIZE = 200
LEARNING_RATE_BASE = 0.1
LEARNING_RATE_DECAY = 0.99
REGULARIZER = 0.0001
STEPS = 50000
MOVING_AVERAGE_DECAY = 0.99
MODEL_SAVE_PATH = "./model/"
MODEL_NAME = "mnist_model"
def backward(mnist):
x = tf.placeholder(tf.float32, [None, mnist_forward.INPUT_NODE])
y_ = tf.placeholder(tf.float32, [None, mnist_forward.OUTPUT_NODE])
y = mnist_forward.forward(x, REGULARIZER)
global_step = tf.Variable(0, trainable=False)
ce = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=y, labels=tf.argmax(y_,1))
cem = tf.reduce_mean(ce)
loss = cem + tf.add_n(tf.get_collection('losses'))
learning_rate = tf.train.exponential_decay(
LEARNING_RATE_BASE,
global_step,
mnist.train.num_examples / BATCH_SIZE,
LEARNING_RATE_DECAY,
staircase = True
)
train_step = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss, global_step = global_step)
ema = tf.train.ExponentialMovingAverage(MOVING_AVERAGE_DECAY, global_step)
ema_op = ema.apply(tf.trainable_variables())
with tf.control_dependencies([train_step, ema_op]):
train_op = tf.no_op(name='train')
saver = tf.train.Saver()
with tf.Session() as sess:
init_op = tf.global_variables_initializer()
sess.run(init_op)
for i in range(STEPS):
xs, ys = mnist.train.next_batch(BATCH_SIZE)
_, loss_value, step = sess.run([train_op, loss, global_step], feed_dict={x: xs, y_: ys})
if i % 1000 ==0:
print("After %d training step(s), loss on training batch is %g." % (step, loss_value))
saver.save(sess, os.path.join(MODEL_SAVE_PATH, MODEL_NAME), global_step = global_step)
def main():
mnist = input_data.read_data_sets("./data/", one_hot = True)
backward(mnist)
if __name__ == '__main__':
main()
tensorflow中使用mnist数据集训练全连接神经网络-学习笔记的更多相关文章
- 【TensorFlow/简单网络】MNIST数据集-softmax、全连接神经网络,卷积神经网络模型
初学tensorflow,参考了以下几篇博客: soft模型 tensorflow构建全连接神经网络 tensorflow构建卷积神经网络 tensorflow构建卷积神经网络 tensorflow构 ...
- 深度学习tensorflow实战笔记(1)全连接神经网络(FCN)训练自己的数据(从txt文件中读取)
1.准备数据 把数据放进txt文件中(数据量大的话,就写一段程序自己把数据自动的写入txt文件中,任何语言都能实现),数据之间用逗号隔开,最后一列标注数据的标签(用于分类),比如0,1.每一行表示一个 ...
- TensorFlow之DNN(二):全连接神经网络的加速技巧(Xavier初始化、Adam、Batch Norm、学习率衰减与梯度截断)
在上一篇博客<TensorFlow之DNN(一):构建“裸机版”全连接神经网络>中,我整理了一个用TensorFlow实现的简单全连接神经网络模型,没有运用加速技巧(小批量梯度下降不算哦) ...
- TensorFlow之DNN(一):构建“裸机版”全连接神经网络
博客断更了一周,干啥去了?想做个聊天机器人出来,去看教程了,然后大受打击,哭着回来补TensorFlow和自然语言处理的基础了.本来如意算盘打得挺响,作为一个初学者,直接看项目(不是指MINIST手写 ...
- Tensorflow 多层全连接神经网络
本节涉及: 身份证问题 单层网络的模型 多层全连接神经网络 激活函数 tanh 身份证问题新模型的代码实现 模型的优化 一.身份证问题 身份证号码是18位的数字[此处暂不考虑字母的情况],身份证倒数第 ...
- MINIST深度学习识别:python全连接神经网络和pytorch LeNet CNN网络训练实现及比较(三)
版权声明:本文为博主原创文章,欢迎转载,并请注明出处.联系方式:460356155@qq.com 在前两篇文章MINIST深度学习识别:python全连接神经网络和pytorch LeNet CNN网 ...
- Caffe系列4——基于Caffe的MNIST数据集训练与测试(手把手教你使用Lenet识别手写字体)
基于Caffe的MNIST数据集训练与测试 原创:转载请注明https://www.cnblogs.com/xiaoboge/p/10688926.html 摘要 在前面的博文中,我详细介绍了Caf ...
- tensorflow读取本地MNIST数据集
tensorflow读取本地MNIST数据集 数据放入文件夹(不要解压gz): >>> import tensorflow as tf >>> from tenso ...
- Keras入门——(1)全连接神经网络FCN
Anaconda安装Keras: conda install keras 安装完成: 在Jupyter Notebook中新建并执行代码: import keras from keras.datase ...
随机推荐
- 【Dubbo源码阅读系列】服务暴露之远程暴露
引言 什么叫 远程暴露 ?试着想象着这么一种场景:假设我们新增了一台服务器 A,专门用于发送短信提示给指定用户.那么问题来了,我们的 Message 服务上线之后,应该如何告知调用方服务器,服务器 A ...
- Spring Boot Admin 2.1.0 全攻略
转载请标明出处: https://www.fangzhipeng.com 本文出自方志朋的博客 Spring Boot Admin简介 Spring Boot Admin是一个开源社区项目,用于管理和 ...
- 轻量ORM-SqlRepoEx (十六)最佳实践之Dapper(2)
简介:SqlRepoEx是 .Net平台下兼容.NET Standard 2.0人一个轻型的ORM.解决了Lambda转Sql语句这一难题,SqlRepoEx使用的是Lambda表达式,所以,对c#程 ...
- Web | JavaScript的提升机制
作用对象: 函数和变量的声明. 作用效果: 会将其声明提升到其所在的作用域的最顶端.函数会优先于变量的声明. //函数的提升优于变量的提升 test(); var a=2; function test ...
- vue 父子组件的生命周期顺序
一.加载渲染过程 父beforeCreate->父created->父beforeMount->子beforeCreate->子created->子beforeMount ...
- docker_Dockerfile_docker hub简单使用搭建nginx
Docker for Windows是Docker for Microsoft Windows 的Community Edition(CE).要下载Docker for Windows,请前往Dock ...
- 基于 HTML5 Canvas 的拓扑组件开发
在现在前端圈大行其道的 React 和 Vue 中,可复用的组件可能是他们大受欢迎的原因之一, 在 HT 的产品中也有组件的概念,不过在 HT 中组件的开发是依托于 HTML5 Canvas 的技术去 ...
- vue-nuxt.js部署到宝塔主机服务器
废话不多说,直接上步骤,如下: 本文章为在 vue环境下使用了nuxt.js 1.搭建环境--由于本人安装的是宝塔主机,因此如下: 由于我直接使用的是宝塔主机,直接去“软件管理”安装 PM2管理器. ...
- 【大数据实战】Logstash采集->Kafka->ElasticSearch检索
1. Logstash概述 Logstash的官网地址为:https://www.elastic.co/cn/products/logstash,以下是官方对Logstash的描述. Logstash ...
- aiohttp的模板
import aiohttp import asyncio import async_timeout from urllib.parse import urljoin,urldefrag root_u ...