题目

求有向图最小平均权值回路。

\(n\leq 3*10^3,m\leq 10^4\)


分析

设 \(f_k(x)\) 表示从点 \(x\) 出发恰好走 \(k\) 条边的最短路,

那么答案就是 \(\min_{x=1}^n\max_{k=0}^{n-1}\frac{f_n(x)-f_k(x)}{n-k}\)

所以直接 \(O(nm)\) 就可以了,证明见_rqy dalao的博客

0/1分数规划的方法理论应该会T这里就不写了,不过只要任意点都可以作为起点那么初始值都为0就可以了


代码

#include <cstdio>
#include <cctype>
#include <cstring>
#define rr register
using namespace std;
const int N=3411; typedef double db;
int as[N],n,m; db f[N][N],ans=1e15;
struct node{int y; db w; int next;}e[N*3];
inline signed iut(){
rr int ans=0; rr char c=getchar();
while (!isdigit(c)) c=getchar();
while (isdigit(c)) ans=(ans<<3)+(ans<<1)+(c^48),c=getchar();
return ans;
}
inline void Max(db &x,db y){x=x>y?x:y;}
inline void Min(db &x,db y){x=x<y?x:y;}
signed main(){
n=iut(); m=iut();
for (rr int i=1;i<=m;++i){
rr int x=iut(),y=iut();
rr db w; scanf("%lf",&w);
e[i]=(node){y,w,as[x]},as[x]=i;
}
for (rr int i=1;i<=n;++i){
for (rr int x=1;x<=n;++x) f[i][x]=1e15;
for (rr int x=1;x<=n;++x)
if (f[i-1][x]!=1e15)
for (rr int j=as[x];j;j=e[j].next)
Min(f[i][e[j].y],f[i-1][x]+e[j].w);
}
for (rr int i=1;i<=n;++i){
rr db now=-1e15;
for (rr int j=0;j<n;++j)
Max(now,(f[n][i]-f[j][i])/(n-j));
Min(ans,now);
}
return !printf("%.8lf",ans);
}

0/1分数规划代码

#include <cstdio>
#include <cctype>
#include <cstring>
#define rr register
using namespace std;
const int N=3011; int as[N],n,m; bool v[N]; double dis[N];
struct node{int y; double w; int next;}e[N*5];
inline signed iut(){
rr int ans=0; rr char c=getchar();
while (!isdigit(c)) c=getchar();
while (isdigit(c)) ans=(ans<<3)+(ans<<1)+(c^48),c=getchar();
return ans;
}
inline bool dfs(int x,double mid){
v[x]=1;
for (rr int i=as[x];i;i=e[i].next)
if (dis[e[i].y]>dis[x]+e[i].w-mid){
if (v[e[i].y]) return 0;
dis[e[i].y]=dis[x]+e[i].w-mid;
if (!dfs(e[i].y,mid)) return 0;
}
v[x]=0;
return 1;
}
signed main(){
n=iut(); m=iut();
for (rr int i=1;i<=m;++i){
rr int x=iut(),y=iut();
rr double w; scanf("%lf",&w);
e[i]=(node){y,w,as[x]},as[x]=i;
}
for (rr int i=1;i<=n;++i)
e[i+m]=(node){i,0,as[n+1]},as[n+1]=m+i;
rr double l=-5000,r=5000;
while (l+1e-9<r){
rr double mid=(l+r)/2;
for (rr int i=1;i<=n+1;++i) dis[i]=v[i]=0;
if (dfs(n+1,mid)) l=mid;
else r=mid;
}
return !printf("%.8lf",l);
}

#结论#洛谷 3199 [HNOI2009]最小圈的更多相关文章

  1. 洛谷 P3199 [HNOI2009]最小圈

    P3199 [HNOI2009]最小圈 题目背景 如果你能提供题面或者题意简述,请直接在讨论区发帖,感谢你的贡献. 题目描述 对于一张有向图,要你求图中最小圈的平均值最小是多少,即若一个圈经过k个节点 ...

  2. 洛谷P3199 [HNOI2009]最小圈(01分数规划)

    题意 题目链接 Sol 暴力01分数规划可过 标算应该是这个 #include<bits/stdc++.h> #define Pair pair<int, double> #d ...

  3. 洛谷4951 地震 bzoj1816扑克牌 洛谷3199最小圈 / 01分数规划

    洛谷4951 地震 #include<iostream> #include<cstdio> #include<algorithm> #define go(i,a,b ...

  4. bzoj 1486: [HNOI2009]最小圈 dfs求负环

    1486: [HNOI2009]最小圈 Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 1022  Solved: 487[Submit][Status] ...

  5. BZOJ 1486: [HNOI2009]最小圈( 二分答案 + dfs判负圈 )

    二分答案m, 然后全部边权减掉m, 假如存在负圈, 那么说明有平均值更小的圈存在. 负圈用dfs判断. ------------------------------------------------ ...

  6. BZOJ_1486_[HNOI2009]最小圈_01分数规划

    BZOJ_1486_[HNOI2009]最小圈_01分数规划 Description Input Output Sample Input 4 5 1 2 5 2 3 5 3 1 5 2 4 3 4 1 ...

  7. [HNOI2009]最小圈 (二分答案+负环)

    题面:[HNOI2009]最小圈 题目描述: 考虑带权的有向图\(G=(V,E)\)以及\(w:E\rightarrow R\),每条边\(e=(i,j)(i\neq j,i\in V,j\in V) ...

  8. bzoj千题计划227:bzoj1486: [HNOI2009]最小圈

    http://www.lydsy.com/JudgeOnline/problem.php?id=1486 二分答案 dfs版spfa判负环 #include<queue> #include ...

  9. 【BZOJ1486】[HNOI2009]最小圈 分数规划

    [BZOJ1486][HNOI2009]最小圈 Description Input Output Sample Input 4 5 1 2 5 2 3 5 3 1 5 2 4 3 4 1 3 Samp ...

  10. BZOJ1486 HNOI2009 最小圈 【01分数规划】

    BZOJ1486 HNOI2009 最小圈 Description 应该算是01分数规划的裸板题了吧..但是第一次写还是遇到了一些困难,vis数组不清零之类的 假设一个答案成立,那么一定可以找到一个环 ...

随机推荐

  1. win32-UpdateLayeredWindow

    创建半透明的窗口,以及在窗口上绘制不透明的文本 方法: 创建Bitmap具有PixelFormat32bppPARGB像素格式的GDI + 对象. 创建一个Graphics对象以绘制该Bitmap对象 ...

  2. 【Azure 应用服务】可以在app service里建SFTP服务吗?

    问题描述 怎样可以在App Service里建SFTP服务? 并不是说通过FTP的方式进行App Service的文件部署. 问题回答 不能通过 App Service 来搭建总计的SFTP服务,因为 ...

  3. X86模拟龙芯与编译 .NET CoreCLR

    目录 .NET 收到一台龙芯机器 编译 CoreCLR 环境要求 部署虚拟机与环境 Linux 安装 KVM 下载需要的文件 启动模拟器 下载 CoreCLR 尝试编译 CoreCLR 前段时间得知龙 ...

  4. 机器学习可解释性--LIME

    A Unified Approach to Interpreting Model Predictions trusting a prediction or trusting a model 如果⼀个机 ...

  5. Python 中read()、 readline() 、readlines()三者之间的区别?

    read()方法用于一次性读取整个文件的内容,并将其作为一个字符串返回. readline()方法用于逐行读取文件的内容.每次调用readline()方法,它会读取文件的下一行,并将其作为一个字符串返 ...

  6. 玩转Vue3之Composables

    前言 Composables 称之为可组合项,熟悉 react 的同学喜欢称之为 hooks ,由于可组合项的存在,Vue3 中的组件之间共享状态比以往任何时候都更容易.这种新范例引入了一种更有组织性 ...

  7. .vscode\settings.json .gitignore 项目文件配置

    一.项目本地新增配置文件: .vscode\settings.json {   // editor   "editor.formatOnSave": true,   "e ...

  8. echo: nice day

    乐开花了,echo 姑娘,很合我的胃口,活泼.俏皮.专业.三观出乎的齐,第一次遇见这种默契度如此高的,你说半句我懂,我说半句你懂,太完美了,以前感觉和女生沟通太累,聊几句就 game over,我这是 ...

  9. NA嵌入Flutter页面

    目录介绍 01.Android承载flutter容器 02.过时的NA跳转flutter方案 03.升级版本NA跳转Flutter处理 04.如何处理NA跳转flutter传参 05.思考遇到的几个问 ...

  10. 记录--谁还没个靠bug才能正常运行的程序

    这里给大家分享我在网上总结出来的一些知识,希望对大家有所帮助 最近遇到一个问题,计算滚动距离,滚动比例达到某界定值时,显示mask,很常见吧^ _ ^ 这里讲的不是这个需求的实现,是其中遇到了一个比较 ...