代码随想录算法训练营Day20 二叉树| 235. 二叉搜索树的最近公共祖先 701.二叉搜索树中的插入操作 450.删除二叉搜索树中的节点
代码随想录算法训练营
235. 二叉搜索树的最近公共祖先
题目链接:235. 二叉搜索树的最近公共祖先
给定一个二叉搜索树, 找到该树中两个指定节点的最近公共祖先。
百度百科中最近公共祖先的定义为:“对于有根树 T 的两个结点 p、q,最近公共祖先表示为一个结点 x,满足 x 是 p、q 的祖先且 x 的深度尽可能大(一个节点也可以是它自己的祖先)。”
例如,给定如下二叉搜索树: root = [6,2,8,0,4,7,9,null,null,3,5]
总体思路
那么本题是二叉搜索树,二叉搜索树是有序的,那得好好利用一下这个特点。
在有序树里,如果判断一个节点的左子树里有p,右子树里有q呢?
因为是有序树,所有 如果 中间节点是 q 和 p 的公共祖先,那么 中节点的数组 一定是在 [p, q]区间的。即 中节点 > p && 中节点 < q 或者 中节点 > q && 中节点 < p。
那么只要从上到下去遍历,遇到 cur节点是数值在[p, q]区间中则一定可以说明该节点cur就是q 和 p的公共祖先。 那问题来了,一定是最近公共祖先吗?
如图,我们从根节点搜索,第一次遇到 cur节点是数值在[p, q]区间中,即 节点5,此时可以说明 p 和 q 一定分别存在于 节点 5的左子树,和右子树中。
此时节点5是不是最近公共祖先? 如果 从节点5继续向左遍历,那么将错过成为q的祖先, 如果从节点5继续向右遍历则错过成为p的祖先。
所以当我们从上向下去递归遍历,第一次遇到 cur节点是数值在[p, q]区间中,那么cur就是 p和q的最近公共祖先。
理解这一点,本题就很好解了。
而递归遍历顺序,本题就不涉及到 前中后序了(这里没有中节点的处理逻辑,遍历顺序无所谓了)。
如图所示:p为节点6,q为节点9
可以看出直接按照指定的方向,就可以找到节点8,为最近公共祖先,而且不需要遍历整棵树,找到结果直接返回!
递归法
递归三部曲如下:
- 确定递归函数返回值以及参数
参数就是当前节点,以及两个结点 p、q。
返回值是要返回最近公共祖先,所以是TreeNode * 。
代码如下:
TreeNode* traversal(TreeNode* cur, TreeNode* p, TreeNode* q)
- 确定终止条件
遇到空返回就可以了,代码如下:
if (cur == NULL) return cur;
其实都不需要这个终止条件,因为题目中说了p、q 为不同节点且均存在于给定的二叉搜索树中。也就是说一定会找到公共祖先的,所以并不存在遇到空的情况。
- 确定单层递归的逻辑
在遍历二叉搜索树的时候就是寻找区间[p->val, q->val](注意这里是左闭又闭)
那么如果 cur->val 大于 p->val,同时 cur->val 大于q->val,那么就应该向左遍历(说明目标区间在左子树上)。
需要注意的是此时不知道p和q谁大,所以两个都要判断
代码如下:
if (cur->val > p->val && cur->val > q->val) {
TreeNode* left = traversal(cur->left, p, q);
if (left != NULL) {
return left;
}
}
细心的同学会发现,在这里调用递归函数的地方,把递归函数的返回值left,直接return。
搜索一条边的写法:
if (递归函数(root->left)) return ;
if (递归函数(root->right)) return ;
搜索整个树写法:
left = 递归函数(root->left);
right = 递归函数(root->right);
left与right的逻辑处理;
本题就是标准的搜索一条边的写法,遇到递归函数的返回值,如果不为空,立刻返回。
如果 cur->val 小于 p->val,同时 cur->val 小于 q->val,那么就应该向右遍历(目标区间在右子树)。
if (cur->val < p->val && cur->val < q->val) {
TreeNode* right = traversal(cur->right, p, q);
if (right != NULL) {
return right;
}
}
剩下的情况,就是cur节点在区间(p->val <= cur->val && cur->val <= q->val)或者 (q->val <= cur->val && cur->val <= p->val)中,那么cur就是最近公共祖先了,直接返回cur。
代码如下:
return cur;
整体代码
class Solution {
private:
TreeNode* traversal(TreeNode* cur, TreeNode* p, TreeNode* q) {
if (cur == NULL) return cur;
// 中
if (cur->val > p->val && cur->val > q->val) { // 左
TreeNode* left = traversal(cur->left, p, q);
if (left != NULL) {
return left;
}
}
if (cur->val < p->val && cur->val < q->val) { // 右
TreeNode* right = traversal(cur->right, p, q);
if (right != NULL) {
return right;
}
}
return cur;
}
public:
TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) {
return traversal(root, p, q);
}
};
701.二叉搜索树中的插入操作
题目链接:701.二叉搜索树中的插入操作
给定二叉搜索树(BST)的根节点和要插入树中的值,将值插入二叉搜索树。 返回插入后二叉搜索树的根节点。 输入数据保证,新值和原始二叉搜索树中的任意节点值都不同。
注意,可能存在多种有效的插入方式,只要树在插入后仍保持为二叉搜索树即可。 你可以返回任意有效的结果。
总体思路
这道题目其实是一道简单题目,但是题目中的提示:有多种有效的插入方式,还可以重构二叉搜索树,一下子吓退了不少人,瞬间感觉题目复杂了很多。
其实可以不考虑题目中提示所说的改变树的结构的插入方式。
如下演示视频中可以看出:只要按照二叉搜索树的规则去遍历,遇到空节点就插入节点就可以了。
例如插入元素10 ,需要找到末尾节点插入便可,一样的道理来插入元素15,插入元素0,插入元素6,需要调整二叉树的结构么? 并不需要。。
只要遍历二叉搜索树,找到空节点 插入元素就可以了,那么这道题其实就简单了。
接下来就是遍历二叉搜索树的过程了。
递归
递归三部曲:
- 确定递归函数参数以及返回值
参数就是根节点指针,以及要插入元素,这里递归函数要不要有返回值呢?
可以有,也可以没有,但递归函数如果没有返回值的话,实现是比较麻烦的,下面也会给出其具体实现代码。
有返回值的话,可以利用返回值完成新加入的节点与其父节点的赋值操作。(下面会进一步解释)
递归函数的返回类型为节点类型TreeNode * 。
代码如下:
TreeNode* insertIntoBST(TreeNode* root, int val)
- 确定终止条件
终止条件就是找到遍历的节点为null的时候,就是要插入节点的位置了,并把插入的节点返回。
代码如下:
if (root == NULL) {
TreeNode* node = new TreeNode(val);
return node;
}
这里把添加的节点返回给上一层,就完成了父子节点的赋值操作了,详细再往下看。
- 确定单层递归的逻辑
此时要明确,需要遍历整棵树么?
别忘了这是搜索树,遍历整棵搜索树简直是对搜索树的侮辱,哈哈。
搜索树是有方向了,可以根据插入元素的数值,决定递归方向。
代码如下:
if (root->val > val) root->left = insertIntoBST(root->left, val);
if (root->val < val) root->right = insertIntoBST(root->right, val);
return root;
到这里,大家应该能感受到,如何通过递归函数返回值完成了新加入节点的父子关系赋值操作了,下一层将加入节点返回,本层用root->left或者root->right将其接住。
整体代码如下:
class Solution {
public:
TreeNode* insertIntoBST(TreeNode* root, int val) {
if (root == NULL) {
TreeNode* node = new TreeNode(val);
return node;
}
if (root->val > val) root->left = insertIntoBST(root->left, val);
if (root->val < val) root->right = insertIntoBST(root->right, val);
return root;
}
};
可以看出代码并不复杂。
刚刚说了递归函数不用返回值也可以,找到插入的节点位置,直接让其父节点指向插入节点,结束递归,也是可以的。
那么递归函数定义如下:
TreeNode* parent; // 记录遍历节点的父节点
void traversal(TreeNode* cur, int val)
没有返回值,需要记录上一个节点(parent),遇到空节点了,就让parent左孩子或者右孩子指向新插入的节点。然后结束递归。
代码如下:
class Solution {
private:
TreeNode* parent;
void traversal(TreeNode* cur, int val) {
if (cur == NULL) {
TreeNode* node = new TreeNode(val);
if (val > parent->val) parent->right = node;
else parent->left = node;
return;
}
parent = cur;
if (cur->val > val) traversal(cur->left, val);
if (cur->val < val) traversal(cur->right, val);
return;
}
public:
TreeNode* insertIntoBST(TreeNode* root, int val) {
parent = new TreeNode(0);
if (root == NULL) {
root = new TreeNode(val);
}
traversal(root, val);
return root;
}
};
可以看出还是麻烦一些的。
我之所以举这个例子,是想说明通过递归函数的返回值完成父子节点的赋值是可以带来便利的。
网上千篇一律的代码,可能会误导大家认为通过递归函数返回节点 这样的写法是天经地义,其实这里是有优化的!
450.删除二叉搜索树中的节点
题目链接:450.删除二叉搜索树中的节点
给定一个二叉搜索树的根节点 root 和一个值 key,删除二叉搜索树中的 key 对应的节点,并保证二叉搜索树的性质不变。返回二叉搜索树(有可能被更新)的根节点的引用。
一般来说,删除节点可分为两个步骤:
首先找到需要删除的节点; 如果找到了,删除它。 说明: 要求算法时间复杂度为 $O(h)$,h 为树的高度。
总体思路
搜索树的节点删除要比节点增加复杂的多,有很多情况需要考虑,做好心理准备。
递归
递归三部曲:
- 确定递归函数参数以及返回值
说到递归函数的返回值,在二叉树:搜索树中的插入操作中通过递归返回值来加入新节点, 这里也可以通过递归返回值删除节点。
代码如下:
TreeNode* deleteNode(TreeNode* root, int key)
- 确定终止条件
遇到空返回,其实这也说明没找到删除的节点,遍历到空节点直接返回了
if (root == nullptr) return root;
- 确定单层递归的逻辑
这里就把二叉搜索树中删除节点遇到的情况都搞清楚。
有以下五种情况: - 第一种情况:没找到删除的节点,遍历到空节点直接返回了
- 找到删除的节点
- 第二种情况:左右孩子都为空(叶子节点),直接删除节点, 返回NULL为根节点
- 第三种情况:删除节点的左孩子为空,右孩子不为空,删除节点,右孩子补位,返回右孩子为根节点
- 第四种情况:删除节点的右孩子为空,左孩子不为空,删除节点,左孩子补位,返回左孩子为根节点
- 第五种情况:左右孩子节点都不为空,则将删除节点的左子树头结点(左孩子)放到删除节点的右子树的最左面节点的左孩子上,返回删除节点右孩子为新的根节点。
动画中的二叉搜索树中,删除元素7, 那么删除节点(元素7)的左孩子就是5,删除节点(元素7)的右子树的最左面节点是元素8。
将删除节点(元素7)的左孩子放到删除节点(元素7)的右子树的最左面节点(元素8)的左孩子上,就是把5为根节点的子树移到了8的左孩子的位置。
要删除的节点(元素7)的右孩子(元素9)为新的根节点。.
这样就完成删除元素7的逻辑,最好动手画一个图,尝试删除一个节点试试。
代码如下:
if (root->val == key) {
// 第二种情况:左右孩子都为空(叶子节点),直接删除节点, 返回NULL为根节点
// 第三种情况:其左孩子为空,右孩子不为空,删除节点,右孩子补位 ,返回右孩子为根节点
if (root->left == nullptr) return root->right;
// 第四种情况:其右孩子为空,左孩子不为空,删除节点,左孩子补位,返回左孩子为根节点
else if (root->right == nullptr) return root->left;
// 第五种情况:左右孩子节点都不为空,则将删除节点的左子树放到删除节点的右子树的最左面节点的左孩子的位置
// 并返回删除节点右孩子为新的根节点。
else {
TreeNode* cur = root->right; // 找右子树最左面的节点
while(cur->left != nullptr) {
cur = cur->left;
}
cur->left = root->left; // 把要删除的节点(root)左子树放在cur的左孩子的位置
TreeNode* tmp = root; // 把root节点保存一下,下面来删除
root = root->right; // 返回旧root的右孩子作为新root
delete tmp; // 释放节点内存(这里不写也可以,但C++最好手动释放一下吧)
return root;
}
}
这里相当于把新的节点返回给上一层,上一层就要用 root->left 或者 root->right接住,代码如下:
if (root->val > key) root->left = deleteNode(root->left, key);
if (root->val < key) root->right = deleteNode(root->right, key);
return root;
整体代码如下:(注释中:情况1,2,3,4,5和上面分析严格对应)
class Solution {
public:
TreeNode* deleteNode(TreeNode* root, int key) {
if (root == nullptr) return root; // 第一种情况:没找到删除的节点,遍历到空节点直接返回了
if (root->val == key) {
// 第二种情况:左右孩子都为空(叶子节点),直接删除节点, 返回NULL为根节点
if (root->left == nullptr && root->right == nullptr) {
///! 内存释放
delete root;
return nullptr;
}
// 第三种情况:其左孩子为空,右孩子不为空,删除节点,右孩子补位 ,返回右孩子为根节点
else if (root->left == nullptr) {
auto retNode = root->right;
///! 内存释放
delete root;
return retNode;
}
// 第四种情况:其右孩子为空,左孩子不为空,删除节点,左孩子补位,返回左孩子为根节点
else if (root->right == nullptr) {
auto retNode = root->left;
///! 内存释放
delete root;
return retNode;
}
// 第五种情况:左右孩子节点都不为空,则将删除节点的左子树放到删除节点的右子树的最左面节点的左孩子的位置
// 并返回删除节点右孩子为新的根节点。
else {
TreeNode* cur = root->right; // 找右子树最左面的节点
while(cur->left != nullptr) {
cur = cur->left;
}
cur->left = root->left; // 把要删除的节点(root)左子树放在cur的左孩子的位置
TreeNode* tmp = root; // 把root节点保存一下,下面来删除
root = root->right; // 返回旧root的右孩子作为新root
delete tmp; // 释放节点内存(这里不写也可以,但C++最好手动释放一下吧)
return root;
}
}
if (root->val > key) root->left = deleteNode(root->left, key);
if (root->val < key) root->right = deleteNode(root->right, key);
return root;
}
};
普通二叉树的删除方式
介绍一种通用的删除,普通二叉树的删除方式(没有使用搜索树的特性,遍历整棵树),用交换值的操作来删除目标节点。
代码中目标节点(要删除的节点)被操作了两次:
- 第一次是和目标节点的右子树最左面节点交换。
- 第二次直接被NULL覆盖了。
思路有点绕,感兴趣的同学可以画图自己理解一下。
代码如下:(关键部分已经注释)
class Solution {
public:
TreeNode* deleteNode(TreeNode* root, int key) {
if (root == nullptr) return root;
if (root->val == key) {
if (root->right == nullptr) { // 这里第二次操作目标值:最终删除的作用
return root->left;
}
TreeNode *cur = root->right;
while (cur->left) {
cur = cur->left;
}
swap(root->val, cur->val); // 这里第一次操作目标值:交换目标值其右子树最左面节点。
}
root->left = deleteNode(root->left, key);
root->right = deleteNode(root->right, key);
return root;
}
};
这个代码是简短一些,思路也巧妙,但是不太好想,实操性不强,推荐第一种写法!
代码随想录算法训练营Day20 二叉树| 235. 二叉搜索树的最近公共祖先 701.二叉搜索树中的插入操作 450.删除二叉搜索树中的节点的更多相关文章
- 代码随想录算法训练营day22 | leetcode 235. 二叉搜索树的最近公共祖先 ● 701.二叉搜索树中的插入操作 ● 450.删除二叉搜索树中的节点
LeetCode 235. 二叉搜索树的最近公共祖先 分析1.0 二叉搜索树根节点元素值大小介于子树之间,所以只要找到第一个介于他俩之间的节点就行 class Solution { public T ...
- 代码随想录算法训练营day20 | leetcode ● 654.最大二叉树 ● 617.合并二叉树 ● 700.二叉搜索树中的搜索 ● 98.验证二叉搜索树
LeetCode 654.最大二叉树 分析1.0 if(start == end) return节点索引 locateMaxNode(arr,start,end) new root = 最大索引对应节 ...
- [程序员代码面试指南]二叉树问题-在二叉树中找到两个节点的最近公共祖先、[LeetCode]235. 二叉搜索树的最近公共祖先(BST)(非递归)
题目 题解 法一: 按照递归的思维去想: 递归终止条件 递归 返回值 1 如果p.q都不在root为根节点的子树中,返回null 2 如果p.q其中之一在root为根节点的子树中,返回该节点 3 如果 ...
- LeetCode 235. 二叉搜索树的最近公共祖先 32
235. 二叉搜索树的最近公共祖先 235. Lowest Common Ancestor of a Binary Search Tree 题目描述 给定一个二叉搜索树,找到该树中两个指定节点的最近公 ...
- LeetCode 235. 二叉搜索树的最近公共祖先
235. 二叉搜索树的最近公共祖先 题目描述 给定一个二叉搜索树, 找到该树中两个指定节点的最近公共祖先. 百度百科中最近公共祖先的定义为:"对于有根树 T 的两个结点 p.q,最近公共祖先 ...
- Leetcode:235. 二叉搜索树的最近公共祖先
Leetcode:235. 二叉搜索树的最近公共祖先 Leetcode:235. 二叉搜索树的最近公共祖先 Talk is cheap . Show me the code . /** * Defin ...
- Java实现 LeetCode 235 二叉搜索树的最近公共祖先
235. 二叉搜索树的最近公共祖先 给定一个二叉搜索树, 找到该树中两个指定节点的最近公共祖先. 百度百科中最近公共祖先的定义为:"对于有根树 T 的两个结点 p.q,最近公共祖先表示为一个 ...
- 剑指 Offer 68 - I. 二叉搜索树的最近公共祖先
剑指 Offer 68 - I. 二叉搜索树的最近公共祖先 给定一个二叉搜索树, 找到该树中两个指定节点的最近公共祖先. 百度百科中最近公共祖先的定义为:"对于有根树 T 的两个结点 p.q ...
- 剑指 Offer 68 - I. 二叉搜索树的最近公共祖先 + 二叉排序树 + 最近公共祖先
剑指 Offer 68 - I. 二叉搜索树的最近公共祖先 Offer_68_1 题目描述 方法一:迭代法 由于该题的二叉树属于排序二叉树,所以相对较简单. 只需要判断两个结点是否在根节点的左右子树中 ...
- 代码随想录算法训练营day21 | leetcode ● 530.二叉搜索树的最小绝对差 ● 501.二叉搜索树中的众数 ● ***236. 二叉树的最近公共祖先
LeetCode 530.二叉搜索树的最小绝对差 分析1.0 二叉搜索树,中序遍历形成一个升序数组,节点差最小值一定在中序遍历两个相邻节点产生 ✡✡✡ 即 双指针思想在树遍历中的应用 class So ...
随机推荐
- Spring框架中都用到了哪些设计模式 ?
1.简单工厂模式 简单工厂模式的本质就是一个工厂类根据传入的参数,动态的决定实例化哪个类.Spring 中的 BeanFactory 就是简单工厂模式的体现,根据传入一个唯一的标识来获得 bean 对 ...
- STM32 HAL库学习 (3) 中断!
中断在单片机开发中有着重中之重的地位. 中断即打断,实至CPU再执行当前程序时,由于系统出现了某种需要处理的紧急情况,CPU暂停正在执行的程序,转而去执行另一段特殊程序来处理的出现的紧急 ...
- 使用drf的序列化类实现增删改查接口
目录 什么是DRF 安装DRF 基于原生创建五个接口 基于rest_framework的增删改查 查询多条数据 流程 创建表 创建序列化类 创建视图类 增加路由 查询单条数据 序列化类不变 视图类定义 ...
- python入门教程之二十二网络编程
Python 提供了两个级别访问的网络服务.: 低级别的网络服务支持基本的 Socket,它提供了标准的 BSD Sockets API,可以访问底层操作系统Socket接口的全部方法. 高级别的网络 ...
- [数据库/ORALCE]导入/导出数据
ORACLE数据导入/导出 工具介绍:EXP/IMP | EXPDP/IMPDP EXP和IMP是客户端工具程序,它们既可以在客户端使用,也可以在服务端使用. EXPDP和IMPDP是服务端的工具程序 ...
- Tkinter库的使用
from tkinter import *import tkinter as tkfrom tkinter import Tk, Label,ttkfrom PIL import Image, Ima ...
- Clion+dap仿真器,移植stm32项目
如何将Keil项目移植到Clion,先看几位大佬的文章: 稚晖君的回答:配置CLion用于STM32开发[优雅の嵌入式开发] 野火论坛:DAP仿真器的使用教程 wuxx:nanoDAP使用疑难杂症解析 ...
- servlet 没有实例化可以直接调用非静态方法??
今天练习servlet时,居然发现没有实例化可以直接调用非静态方法.看了好长时间发现:省去了this关键字.记录一下. public class Servlet2 extends GenericSer ...
- Buffer中的public void write(Buffer source, long byteCount)解析
这个把source缓冲区中的数据写到当前缓冲区的方法是比较经典的: if (source == null) throw new IllegalArgumentException("sourc ...
- 版本依赖控制工具Maven
Maven 简介 依赖管理工具 如果说A工程里面用到了B工程的类.接口.配置文件等这样的资源,那么就说A依赖B 构建管理工具 构建:使用原材料生产产品的过程 安装:把一个Maven工程经过打包操作生产 ...