GAN的学习是一个二人博弈问题,最终目标是达到纳什平衡。对抗指的是生成网络和判别网络的互相对抗。生成网络尽可能生成逼真样本,判别网络则尽可能去判别该样本是真实样本,还是生成的假样本。示意图如下:

生成器尽量去生成一种合理的数据分布,可以理解为真实的数据, 从而让判别器无法判别样本究竟来自何方, 两者的训练, 一般来说, 是交替进行的, 生成器的loss通过其生成的数据输入D来进行评估, 一般就是交叉熵 0or1, 0表示判别器识别出了这个样本来自假样本, 另一方面, 判别器也要尽量的去学习, 去分辨真假样本,GAN的目标也是优化2个分布的JS散度

原始GAN的目标优化函数如下:

\[\min\limits_{G} \max\limits_{D}=E_{x\sim p_{data(x)}}\quad[\log(D(X))]+E_{z-p_{z}}[1-\log(D(G(z))]
\]

目标是最小化G,最大化D:

For D:

\[\max\limits_{D}=E_{x\sim p_{data(x)}}\quad [\log(D(X))]+E_{z-p_{z}}[1-\log(D(G(z))]
\]

D最大话意味着:D要尽可能的识别真样本D(X)和假样本D(G(z)), 即将真样本识别为1,假样本识别为0,否则第一部分的公式将趋于负无穷,第二部分也将趋于负无穷:

\[D(X)\uparrow\space\Rightarrow\space\log(D(X))\uparrow
\]
\[D(G(z))\downarrow\space\Rightarrow\space\log(D(G(z)))\downarrow\space\Rightarrow\space 1-\log D(G(z))\downarrow
\]

For G:

\[\min\limits_{G}=E_{x\sim p_{data(x)}}\quad [\log(D(X))]+E_{z-p_{z}}[1-\log(D(G(z))]
\]

因为第一项是没有用的(D部分),所以等价于

=>\(\max\limits_{G}=E_{z-p_{z}}[\log(D(G(z))]\)

GAN的最优情况:

For D:

\[D_{G}=\frac{P_{data}}{P_{data}+P_{fake}}
\]

此处也解释了为什么当D的loss为0.5是认为是最优的D

For G:

G的目标就是生成和真实数据一样的分,故G的最优情况为:

\[P_{data} = \frac{P_{data}+P_{G}}{2}
\]
\[P_{data}=P_{fake}
\]

GAN的一些问题

    1. GAN为什么难以训练?

      大多深度模型的训练都使用优化算法寻找损失函数比较低的值。优化算法通常是个可靠的“下山”过程。生成对抗神经网络要求双方在博弈的过程中达到势均力敌(均衡)。每个模型在更新的过程中(比如生成器)成功的“下山”,但同样的更新可能会造成博弈的另一个模型(比如判别器)“上山”。甚至有时候博弈双方虽然最终达到了均衡,但双方在不断的抵消对方的进步并没有使双方同时达到一个有用的地方。对所有模型同时梯度下降使得某些模型收敛但不是所有模型都达到收敛最优。
    1. 生成器梯度消失问题

      生成器梯度消失问题:当判别器非常准确时,判别器的损失很快收敛到0,从而无法提供可靠的路径使生成器的梯度继续更新,造成生成器梯度消失。GAN的训练因为一开始随机噪声分布,与真实数据分布相差距离太远,两个分布之间几乎没有任何重叠的部分,这时候判别器能够很快的学习把真实数据和生成的假数据区分开来达到判别器的最优,造成生成器的梯度无法继续更新甚至梯度消失.
    1. 模型坍塌

      模型坍塌是指生成器坍塌到了一个极狭小的分布内,生成的样本不在变化。通俗来说就是生成器在某种情况下重复生成完全一致的图像。这就与博弈论中的启动相关了。如果在生成器最小化之前,判别器已经完全最大化(这里的最小化和最大化是指生成网络和鉴别网络是同一个损失函数,但是他们的目标不同,生成网络需要最小化损失函数,鉴别网络需要最大化损失函数),这样所有工作还能进行;但是如果先最小化了生成器,接下来再尝试最大化鉴别器,这样网络是训练不成功的。原因在于若刚开始变保持鉴别器落后于生成器,鉴别器会错误的将空间中某些点标记为最有可能是真的而不是 假的,这样生成器就会选择将所有噪声输入映射到最可能为真的点.

tf2代码连接

GAN的实现和一些问题的更多相关文章

  1. (转) How to Train a GAN? Tips and tricks to make GANs work

    How to Train a GAN? Tips and tricks to make GANs work 转自:https://github.com/soumith/ganhacks While r ...

  2. 不要怂,就是GAN (生成式对抗网络) (一)

    前面我们用 TensorFlow 写了简单的 cifar10 分类的代码,得到还不错的结果,下面我们来研究一下生成式对抗网络 GAN,并且用 TensorFlow 代码实现. 自从 Ian Goodf ...

  3. GAN

    GAN(Generative Adversarial Nets),产生式对抗网络 存在问题: 1.无法表示数据分布 2.速度 3.resolution太小,大了无语义信息 4.无reference 5 ...

  4. 不要怂,就是GAN (生成式对抗网络) (二)

    前面我们了解了 GAN 的原理,下面我们就来用 TensorFlow 搭建 GAN(严格说来是 DCGAN,如无特别说明,本系列文章所说的 GAN 均指 DCGAN),如前面所说,GAN 分为有约束条 ...

  5. 不要怂,就是GAN (生成式对抗网络) (四):训练和测试 GAN

    在 /home/your_name/TensorFlow/DCGAN/ 下新建文件 train.py,同时新建文件夹 logs 和文件夹 samples,前者用来保存训练过程中的日志和模型,后者用来保 ...

  6. 用GAN生成二维样本的小例子

    同步自我的知乎专栏:https://zhuanlan.zhihu.com/p/27343585 本文完整代码地址:Generative Adversarial Networks (GANs) with ...

  7. 提高驾驶技术:用GAN去除(爱情)动作片中的马赛克和衣服

    同步自我的知乎专栏:https://zhuanlan.zhihu.com/p/27199954 作为一名久经片场的老司机,早就想写一些探讨驾驶技术的文章.这篇就介绍利用生成式对抗网络(GAN)的两个基 ...

  8. 学习笔记GAN003:GAN、DCGAN、CGAN、InfoGAN

    ​GAN应用集中在图像生成,NLP.Robt Learning也有拓展.类似于NLP中的Actor-Critic. https://arxiv.org/pdf/1610.01945.pdf . Gen ...

  9. 用MXNet实现mnist的生成对抗网络(GAN)

    用MXNet实现mnist的生成对抗网络(GAN) 生成式对抗网络(Generative Adversarial Network,简称GAN)由一个生成网络与一个判别网络组成.生成网络从潜在空间(la ...

  10. 从一篇ICLR'2017被拒论文谈起:行走在GAN的Latent Space

    同步自我的知乎专栏文章:https://zhuanlan.zhihu.com/p/32135185 从Slerp说起 ICLR'2017的投稿里,有一篇很有意思但被拒掉的投稿<Sampling ...

随机推荐

  1. nginx 基本功能

    1.nginx简介 官方文档 Nginx是一个高性能WEB服务器,除它之外Apache.Tomcat.Jetty.IIS,它们都是Web服务器,或者叫做WWW(World Wide Web)服务器,相 ...

  2. 迈向现代化的.NET配置指北

    一.欢呼 .NET Standard 时代   我现在已不大提 .NET Core,对于我来说,未来的开发将是基于 .NET Standard,不仅仅是面向未来 ,也是面向过去:不只是 .NET Co ...

  3. 我的Java面试资料推荐

    看法 每年去大厂试试水,借此来评估自己的能力.价值和不足,或许还能拿到一个好offer,是个合格程序员的职业表现 大厂面试,基本都是:先过算法,检验面试人的智商和逻辑能力:之后才考察语言.设计.中间件 ...

  4. iview Input 必填不能未空 不能输入空格 v-model.trim required: true

    iview Input 必填不能未空 不能输入空格 v-model.trim required: true 需求 测试在验证必填的时候,会输入一个空格,本着空格不算内容的原则,会提一个bug 解决方案 ...

  5. git svn 提交代码日志填写规范 BUG NEW DEL CHG TRP gitz 日志z

    git svn 提交代码日志填写规范 BUG NEW DEL CHG TRP gitz 日志z

  6. 英语自定义标签 <i:juzi><i:zhuyu>John Smith</i:zhuyu></i:juzi> 主语谓语宾语

    效果 John Smith died in World War Two. John Smith killed three enemy soldiers. <style> i\:juzi { ...

  7. day28--Java泛型01

    Java泛型01 1.泛型的理解和好处 看一个需求: 请编写程序,在ArrayList中添加三个Dog对象 Dog对象含有name和age,并输出name和age(要求使用getXXX()) 先用传统 ...

  8. Android源码在线查看网站

    一.aospxref http://aospxref.com/ 优点:更新速度快 缺点:历史版本较少 二.androidxref http://androidxref.com/ 优点:历史版本较多 缺 ...

  9. Arch Linux 安装手记

    背景 今天尝试安装龙芯版 Linux,本来希望能安装 Debian 版,但只找到一些文档,没找到可安装版的 ISO. 后来顺着这篇文章找到了Arch Linux,就尝试安装了一下. 安装后发现竟然不会 ...

  10. Oracle与MySQL的差异和对比

    Oracle与MySQL的差异和对比:配套hands-on参考脚本. 方便客户针对培训课件内容进行动手实践,加强理解. --------------------------------- -- 主题: ...