题意:有n(n<=100)个石头,每个石头的价值在Ai~Bi(1<=Ai<=Bi<=10000)之间,将这些石头分给两个人,求两个人的最大总价值差的最小值

分析:

  与一般的求最大的最小不同,这里就是取端点问题,所以思路不是从二分出发

  设ΣA=SA,ΣB=SB,第一个人的石头的A的总和是A1,B的总和是B1;第二个人的石头的A的总和是A2,B的总和是B2

  那么有B1-A2<=D,B2-A1<=D

  因为只有两个人,所以有个套路就是统一变量:A2=SA-A1,B2=SB-B1

  代入相加得不等式SB-D<=A1+B1<=D+SA

  SB和SA都是常数,而中间这个其实就是个背包问题

  可以通过背包求出所有能表示出的重量,然后根据重量求出最小的D

  因为重量的最大可能值是2e6,所以不能简单地直接两个for求

  可以用个vector装进所有可以表示的状态,再由它们推其他状态

  时间复杂度O(n^3)

  注意,此题在AOJ上需要while(scanf()!=EOF)

  

AOJ731(不等式)的更多相关文章

  1. [学习笔记]四边形不等式优化DP

    形如$f[i][j]=min{f[i][k]+f[k+1][j]}+w[i][j]$的方程中, $w[\;][\;]$如果同时满足: ①四边形不等式:$w[a][c]+w[b][d]\;\leq\;w ...

  2. hiho #1223 不等式

    #1223 : 不等式 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 给定n个关于X的不等式,问最多有多少个成立. 每个不等式为如下的形式之一: X < C X ...

  3. hdu 3506 Monkey Party 区间dp + 四边形不等式优化

    http://acm.hdu.edu.cn/showproblem.php?pid=3506 四边行不等式:http://baike.baidu.com/link?url=lHOFq_58V-Qpz_ ...

  4. BZOJ 1010 玩具装箱toy(四边形不等式优化DP)(HNOI 2008)

    Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1... ...

  5. Carath\'eodory 不等式

    (Carath\'eodory 不等式) 利用 Scharwz 引理及线性变换, 证明: 若函数 $f(z)$ 在圆 $|z|<R$ 内全纯, 在 $|z|\leq R$ 上连续, $M(r)$ ...

  6. 石子合并(四边形不等式优化dp) POJ1160

    该来的总是要来的———————— 经典问题,石子合并. 对于 f[i][j]= min{f[i][k]+f[k+1][j]+w[i][j]} From 黑书 凸四边形不等式:w[a][c]+w[b][ ...

  7. UVa 10003 (可用四边形不等式优化) Cutting Sticks

    题意: 有一个长为L的木棍,木棍中间有n个切点.每次切割的费用为当前木棍的长度.求切割木棍的最小费用. 分析: d(i, j)表示切割第i个切点到第j个切点这段所需的最小费用.则有d(i, j) = ...

  8. hihocoder #1223 : 不等式 水题

    #1223 : 不等式 Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://hihocoder.com/problemset/problem/1223 ...

  9. 【无聊放个模板系列】HDU 3506 (四边形不等式优化DP-经典石子合并问题[环形])

    #include<cstdio> #include<cstdlib> #include<cstring> #include<iostream> #inc ...

随机推荐

  1. JS操作CSS

    <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...

  2. php(一)

    PHP (Hypertext preprocessor 超文本预处理器) 1.环境工具 Xampp等工具 2.apache配置 默认的Apache路径是  c:/xampp/apache 文件夹 可以 ...

  3. php自动加载函数

    含义:将函数注册到SPL __autoload函数栈中.如果该栈中的函数尚未激活,则激活它们. 先看__autoload 函数 printit.class.php <?php class PRI ...

  4. Node.js——fs常用API

    文件状态 文件删除 文件信息 读取文件夹 文件的截取 创建文件夹 删除目录 文件监视,可以设置监视频率 文件重命名,可以用来剪切文件 注意 fs.open() fs.close() 这是最原始的读写方 ...

  5. php常用的一些代码

    1.获取用户真实ip function getIP() { if (getenv("HTTP_X_FORWARDED_FOR")) { // 这个提到最前面,作为优先级,nginx ...

  6. console.log()与console.dir()

    console.log()可以取代alert()或document.write(),在网页脚本中使用console.log()时,会在浏览器控制台打印出信息. console.dir()可以显示一个对 ...

  7. print keys %map_function 输出 散列的值: OK_funcsplit_funcpackage_VAR

    my %map_function = (     88     "OK_func" => "open_statement",     89     &qu ...

  8. mysql安装及navicat连接

    1.下载mysql官方连接:https://dev.mysql.com/downloads/mysql/ 下载成功后,解压到自己想要的路径下并创建my.ini文件和配置环境变量 然后我们在根目录下创建 ...

  9. pycharm debug后会出现 step over /step into/step into my code /force step into /step out 分别表示

    1.debug,全部打印 2.打断点debug,出现单步调试等按钮,只运行断点前 3.setup over 调试一行代码 4.setup out 运行断点后面所有代码 5.debug窗口显示调试按钮 ...

  10. 在前后端分离的SpringBoot项目中集成Shiro权限框架

    参考[1].在前后端分离的SpringBoot项目中集成Shiro权限框架 参考[2]. Springboot + Vue + shiro 实现前后端分离.权限控制   以及跨域的问题也有涉及