题目描述

一堆木头棍子共有n根,每根棍子的长度和宽度都是已知的。棍子可以被一台机器一个接一个地加工。机器处理一根棍子之前需要准备时间。准备时间是这样定义的:

第一根棍子的准备时间为1分钟;

如果刚处理完长度为L,宽度为W的棍子,那么如果下一个棍子长度为Li,宽度为Wi,并且满足L>=Li,W>=Wi,这个棍子就不需要准备时间,否则需要1分钟的准备时间;

计算处理完n根棍子所需要的最短准备时间。比如,你有5根棍子,长度和宽度分别为(4, 9),(5, 2),(2, 1),(3, 5),(1, 4),最短准备时间为2(按(4, 9)、(3, 5)、(1, 4)、(5, 2)、(2, 1)的次序进行加工)。

输入输出格式

输入格式:

第一行是一个整数n(n<=5000),第2行是2n个整数,分别是L1,W1,L2,w2,…,Ln,Wn。L和W的值均不超过10000,相邻两数之间用空格分开。

输出格式:

仅一行,一个整数,所需要的最短准备时间。

这道题...开始贪心炸掉了。

我们要维护两个变量的单调性,一个是宽度,一个是长度。

我们首先便可以随意对一个变量进行排序,之后再求出另一变量的最长不上升子序列个数即可。

根据dilworth定理,一个序列的最长不上升子序列个数=最长上升子序列的长度。

nlogn大法吼啊。

于是,我们便愉快地AC。

code

 #include<cstdio>
#include<algorithm> using namespace std; int n,tot;
int s[];
struct stick{
int len,wid;
}a[]; bool cmp(stick x,stick y)
{
return x.len>y.len;
} int main()
{
scanf("%d",&n);
for(int i=;i<=n;i++)
scanf("%d%d",&a[i].len,&a[i].wid);
sort(a+,a++n,cmp);
s[]=a[].wid;tot=;
for(int i=;i<=n;i++)
{
if(a[i].wid>s[tot]) s[++tot]=a[i].wid;
else
{
int pos=lower_bound(s+,s+tot+,a[i].wid)-s;
s[pos]=a[i].wid;
}
}
printf("%d",tot);
return ;
}
 

Luogu P1233 木棍加工 【贪心/LIS】的更多相关文章

  1. [Luogu] P1233 木棍加工

    题目描述 一堆木头棍子共有n根,每根棍子的长度和宽度都是已知的.棍子可以被一台机器一个接一个地加工.机器处理一根棍子之前需要准备时间.准备时间是这样定义的: 第一根棍子的准备时间为1分钟: 如果刚处理 ...

  2. 洛谷P1233 木棍加工题解 LIS

    突然发现自己把原来学的LIS都忘完了,正好碰见这一道题.|-_-| \(LIS\),也就是最长上升子序列,也就是序列中元素严格单调递增,这个东西有\(n^{2}\)和\(nlog_{2}n\)两种算法 ...

  3. P1233 木棍加工 dp LIS

    题目描述 一堆木头棍子共有n根,每根棍子的长度和宽度都是已知的.棍子可以被一台机器一个接一个地加工.机器处理一根棍子之前需要准备时间.准备时间是这样定义的: 第一根棍子的准备时间为1分钟: 如果刚处理 ...

  4. 洛谷 P1233 木棍加工 解题报告

    P1233 木棍加工 题目描述 一堆木头棍子共有n根,每根棍子的长度和宽度都是已知的.棍子可以被一台机器一个接一个地加工.机器处理一根棍子之前需要准备时间.准备时间是这样定义的: 第一根棍子的准备时间 ...

  5. P1233 木棍加工

    P1233 木棍加工 题目描述 一堆木头棍子共有n根,每根棍子的长度和宽度都是已知的.棍子可以被一台机器一个接一个地加工.机器处理一根棍子之前需要准备时间.准备时间是这样定义的: 第一根棍子的准备时间 ...

  6. 洛谷P1233 木棍加工【单调栈】

    题目:https://www.luogu.org/problemnew/show/P1233 题意: 有n根木棍,每根木棍有长度和宽度. 现在要求按某种顺序加工木棍,如果前一根木棍的长度和宽度都大于现 ...

  7. 洛谷P1233 [木棍加工]

    主要思路: 这道题一眼看过去就可以贪心.. 首先可以按L排序.. 显然排序之后我们就可以抛开L不管了.. 然后就可以愉快的贪心了.. 细节: 这道题可以看成用 最少的合法序列(详见原题) 装下所有木棍 ...

  8. 洛谷 P1233 木棍加工

    题目描述 一堆木头棍子共有n根,每根棍子的长度和宽度都是已知的.棍子可以被一台机器一个接一个地加工.机器处理一根棍子之前需要准备时间.准备时间是这样定义的: 第一根棍子的准备时间为1分钟: 如果刚处理 ...

  9. P1233木棍加工

    这个题被算法标签标为DP,但其实可能只是用dp求子序列,,(n方) 给出l与w,只要是l与w同时满足小于一个l与w,那么这个木棍不需要时间,反之需要1.看到这个题,首先想到了二维背包,然后发现没有最大 ...

随机推荐

  1. 利用Cufon技术渲染文字的简单示例

    Cufon是一种能够根据指定的字体渲染文字的技术.今天试用了下,主要有几个步骤: 1.下载Cufon.js(http://cufon.shoqolate.com/generate/) 2.获取需要渲染 ...

  2. RESTful API设计规范收集

    说明:其实没有绝对的规范,达到90%即可. 理解RESTful架构:http://www.ruanyifeng.com/blog/2011/09/restful.html RESTful API 设计 ...

  3. Spring Data JPA 入门篇

    Spring Data JPA是什么 它是Spring基于ORM框架(如hibernate,Mybatis等).JPA规范(Java Persistence API)封装的一套 JPA应用框架,可使开 ...

  4. WinCE5.0如何安装.NET3.5

    首先去微软官网下载.NET Compact Framework 3.5 Redistributable 点击下载 下载页面 一共有两种安装方式,我们先介绍常规的安装方式 1.设备连接到电脑,然后双击下 ...

  5. 利用Druid实现应用和SQL监控

    一.关于Druid Druid是一个JDBC组件,它包括三部分: DruidDriver 代理Driver,能够提供基于Filter-Chain模式的插件体系. DruidDataSource 高效可 ...

  6. [Javascript] Understanding the .constructor property on JavaScript Objects

    Constructor functions hold an interesting purpose in JavaScript. Unlike in classical languages, they ...

  7. Please enter a commit message to explain why this merge is necessary.

    Please enter a commit message to explain why this merge is necessary. 请输入提交消息来解释为什么这种合并是必要的 git 在pul ...

  8. POJ 2545+2591+2247+1338简单水题

    [题意简述]:就是有这种一个序列.就拿当p1 = 2,p2 = 3, p3 = 5,来举例.由这三个数为基准组成的序列是: 2,3,4,5,6,8,9,10,12--如今给你这个序列数组的下标,让你求 ...

  9. STL 源代码剖析 算法 stl_algo.h -- nth_element

    本文为senlie原创.转载请保留此地址:http://blog.csdn.net/zhengsenlie nth_element ---------------------------------- ...

  10. The sandbox is not sync with the Podfile.lock

    github下载的Demo,很多时候使用到CocoaPods,有的时候因为依赖关系或者版本问题不能编译运行. 出现 以下错误 The sandbox is not sync with the Podf ...