Mission Impossible

Time Limit: 2 Seconds                                     Memory Limit: 65536 KB                            

            Now a spy is besieged in a maze. He knows that there is a telegraph transmitter  in the maze somewhere. So he must get there to use the telegraph transmitter to  ask for help. 

But the mission is very dangerous, because there are some mines in the map   (see the figure above). When the spy steps on it, it will immediately explode   and the mission will fail. The spy doesn't know where the mines are, thus he   will use his best strategy to get to the destination (he will always go along   the shortest path). There may be several shortest paths for the spy to choose,   and the probability to choose each path from the start point to the destination   is the same.

Now your task is to write a program to find the probability that the spy can   get to the telegraph transmitter.

Input

The input file begins with an integer T, indicating the number of test cases.   Each test case begins with two integers N, M, indicating the height and width   of the maze. (N <= 10, M <= 10) In the following N lines, each line contains   M characters describing the map. There is one blank line after each map. Spaces   denotes empty square, '#' denotes a wall, 'S' denotes the spy, 'M' denotes a   mine, and 'T' denotes the telegraph transmitter. It's guaranteed that the four   sides of the map are all walls.

  Output

For each maze, first output the number of the test case (`Mission #1:', ` Mission   #2:', etc.) in a line of its own.

If it is possible for the spy to get to the telegraph transmitter, print a   line containing the probability that the spy can get to the telegraph transmitter,   exact to two digit to the right of the decimal point. Adhere to the output format   shown in the sample below.

If the spy can't get to the destination, output a line containing the statement   `Mission Impossible.'
  Output a blank line after each test case.

Sample Input

2   6 10   ##########   # M   T  #   #  ###   #   #  ###   #   # S      #   ##########

6 10   ##########   # M  T   #   #  ###   #   #  ###   #   # S      #   ##########

Sample Output

Mission #1:   The probability for the spy to get to the telegraph transmitter is 50.00%.

Mission #2:   Mission Impossible.


                            Author: YE, Kai                                         Source: ZOJ Monthly, February 2004

题意:间谍只走最短路,而这些路上可能埋有炸弹,请问间谍安全到达目的地的可能性多少。

题解:BFS记录最短路径个数以及这些路径中踩到炸弹的路径的个数,最后换算个百分比就行了。

注意需要延迟标记,还有图中有空格,读入不能用scanf。

 #include<iostream>
#include<cstring>
#include<cstdlib>
#include<cstdio>
#include<algorithm>
#include<cmath>
#include<queue>
#include<map> #define N 101
#define M 15
#define mod 1000000007
#define mod2 100000000
#define ll long long
#define maxi(a,b) (a)>(b)? (a) : (b)
#define mini(a,b) (a)<(b)? (a) : (b) using namespace std; int T;
char s[N][N];
int vis[N][N];
int cc,tot;
int n,m;
int dirx[]={,-,,};
int diry[]={,,,-}; typedef struct
{
int x;
int y;
int now;
int boom;
}PP; PP start,end; int ok(PP next)
{
if(next.x>= && next.x<n && next.y>= && next.y<m && vis[next.x][next.y]== && s[next.x][next.y]!='#'){
if(s[next.x][next.y]=='M')
next.boom=;
return next.boom;
}
return ;
} void BFS()
{
queue<PP> q;
q.push(start);
int first=-;
PP te,next;
int i;
int re;
while(q.size()!=)
{
te=q.front();
vis[te.x][te.y]=;
q.pop();
// printf(" %d %d\n",te.x,te.y);
for(i=;i<;i++){
next.x=te.x+dirx[i];
next.y=te.y+diry[i];
next.now=te.now+;
next.boom=te.boom;
re=ok(next);
next.boom=re;
if(re==) continue;
if(next.x==end.x && next.y==end.y)
{
// printf(" %d %d first=%d now=%d %d\n",next.x,next.y,first,next.now,next.boom);
if(first==-) first=next.now;
else{
if(next.now!=first) return;
}
tot++;
if(next.boom==) cc++;
}
else{
q.push(next);
}
}
}
} int main()
{
int i,j;
//freopen("data.in","r",stdin);
scanf("%d",&T);
getchar();
for(int cnt=;cnt<=T;cnt++)
//while(T--)
//while(scanf("%d%d",&n,&q)!=EOF)
{
//q.clear();
cc=tot=;
memset(vis,,sizeof(vis));
scanf("%d%d",&n,&m);
getchar();
for(i=;i<n;i++){
gets(s[i]);
}
for(i=;i<n;i++){
for(j=;j<m;j++){
if(s[i][j]=='S'){
start.x=i;
start.y=j;
start.boom=;
start.now=;
}
if(s[i][j]=='T'){
end.x=i;
end.y=j;
}
}
}
//printf("%d %d %d %d\n",start.x,start.y,end.x,end.y);
BFS();
printf("Mission #%d:\n",cnt);
if(cc==){
printf("Mission Impossible.\n");
}
else{
printf("The probability for the spy to get to the telegraph transmitter is %.2f%%.\n",(1.0)**cc/tot);
}
printf("\n"); } return ;
}

zoj 2081 BFS 延迟标记 读入问题的更多相关文章

  1. codevs 1082 线段树练习 3 区间更新+延迟标记

    题目描述 Description 给你N个数,有两种操作: 1:给区间[a,b]的所有数增加X 2:询问区间[a,b]的数的和. 输入描述 Input Description 第一行一个正整数n,接下 ...

  2. HDU5785 Interesting(Manacher + 延迟标记)

    题目 Source http://acm.hdu.edu.cn/showproblem.php?pid=5785 Description Alice get a string S. She think ...

  3. FZU 2171(线段树的延迟标记)

    题意:容易理解. 分析:时隔很久,再一次写了一道线段树的代码,之前线段树的题也做了不少,包括各种延迟标记,但是在组队分任务之后,我们队的线段树就交给了另外一个队友在搞, 然后我就一直没去碰线段树的题了 ...

  4. [HDOJ4578]Transformation(线段树,多延迟标记)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4578 四种操作:查询.加法.乘法.改数.应该是需要维护三个lazy标记,然后就是套路了.查询是区间内所 ...

  5. 杭电 HDU ACM 1698 Just a Hook(线段树 区间更新 延迟标记)

    欢迎"热爱编程"的高考少年--报考杭州电子科技大学计算机学院 Just a Hook Time Limit: 4000/2000 MS (Java/Others)    Memor ...

  6. [uva11992]Fast Matrix Operations(多延迟标记,二维线段树,区间更新)

    题目链接:https://vjudge.net/problem/UVA-11992 题意:n*m的矩阵,每次对一个子矩阵操作,有三种操作:加x,设置为x,查询.查询返回子矩阵和.最小值.最大值 n很小 ...

  7. Tree(树链剖分+线段树延迟标记)

    Tree http://poj.org/problem?id=3237 Time Limit: 5000MS   Memory Limit: 131072K Total Submissions: 12 ...

  8. 【左偏树+延迟标记+拓扑排序】BZOJ4003-城池攻占

    [题目大意] 有n个城市构成一棵树,除1号城市外每个城市均有防御值h和战斗变化参量a和v. 现在有m个骑士各自来刷副本,每个其实有一个战斗力s和起始位置c.如果一个骑士的战斗力s大于当前城市的防御值h ...

  9. Codeforces Round #262 (Div. 2)C(二分答案,延迟标记)

    这是最大化最小值的一类问题,这类问题通常用二分法枚举答案就行了. 二分答案时,先确定答案肯定在哪个区间内.然后二分判断,关键在于怎么判断每次枚举的这个答案行不行. 我是用a[i]数组表示初始时花的高度 ...

随机推荐

  1. 如何诊断 11.2 集群节点驱逐问题 (文档 ID 1674872.1)

    适用于: Oracle Database - Enterprise Edition - 版本 11.2.0.1 到 11.2.0.2 [发行版 11.2]本文档所含信息适用于所有平台 用途 这篇文档提 ...

  2. Swift REPL入门介绍

    Xcode 6.1 引入了一个新特性用来辅助Swift开发,即Read Eval Print Loop(“读取-求值-输出”循环,简称REPL).熟悉解释型语言的开发者将会对这个命令行环境感到舒适,而 ...

  3. Django auth权限

    创建超级管理员命令 python manage.py createsuperuser --username hello 检查和校验用户 from django.contrib import auth ...

  4. 前端性能优化:细说JavaScript的加载与执行

    本文主要是从性能优化的角度来探讨JavaScript在加载与执行过程中的优化思路与实践方法,既是细说,文中在涉及原理性的地方,不免会多说几句,还望各位读者保持耐心,仔细理解,请相信,您的耐心付出一定会 ...

  5. javascript“类”与继承总结和回顾

    Javascipt语法不支持"类"(class)[es6已经支持],但是有模拟类的方法.今天我主要谈谈Javascipt中模拟“类”的方法及js中继承的总结和回顾. js中实现“类 ...

  6. word2vec 中的数学原理详解(二)预备知识

    版权声明:本文为博主原创文章,未经博主允许不得转载. https://blog.csdn.net/peghoty/article/details/37969635 https://blog.csdn. ...

  7. javascript获取属性的两种方法及区别

    javascript获取属性有两种方式,点或者中括号: var obj={} obj.x=1 console.log(obj.x)//1 第一种方式,x是字面量 try{ console.log(ob ...

  8. React初识整理(二)--生命周期的方法

    React生命周期主要有7中: 1. componentWillMount() :组件将要挂载时触发 ,只调用1次 2. componentDidMount() :组件挂载完成时触发,只调用1次 3. ...

  9. python常用内置函数用法精要

    用一个表格大致总结一下所有的内置函数用法,如下: 函数 功能简要说明 abs(x) 返回数字x的绝对值或复数x的模 all(iterable) 如果对于可迭代对象中所有元素x都等价于True,则返回T ...

  10. HUAWEI交换机配置telnet登录

    Huawei交换机配置Telnet登录 一,交换机开启Telnet服务 <Huawei>system-view                                        ...