题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1007

可以把直线按斜率从小到大排序,用单调栈维护,判断新直线与栈顶的交点和栈顶与它之前直线的交点的位置关系即可。

代码如下:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
int const maxn=;
int n,top,ans[maxn];
struct N{
double a,b;
int bh;
}p[maxn],sta[maxn];
bool vis[];
bool cmp(N x,N y)
{
if(x.a!=y.a)return x.a<y.a;
else return x.b>y.b;
}
bool pd(N a)
{
N b=sta[top],c=sta[top-];
double x1=(c.b-b.b)/(b.a-c.a);
double x2=(c.b-a.b)/(a.a-c.a);
if(x2<=x1)return ;
else return ;
}
int main()
{
scanf("%d",&n);
for(int i=;i<=n;i++)
scanf("%lf%lf",&p[i].a,&p[i].b),p[i].bh=i;
sort(p+,p+n+,cmp);
for(int i=;i<=n;i++)
{
if(p[i].a==p[i-].a)continue;
while(top>&&pd(p[i]))top--;
sta[++top]=p[i];ans[top]=p[i].bh;
}
sort(ans+,ans+top+);
for(int i=;i<=top;i++)
printf("%d ",ans[i]);
return ;
}

bzoj1007 [HNOI2008]水平可见直线——单调栈的更多相关文章

  1. BZOJ1007: [HNOI2008]水平可见直线(单调栈)

    Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 8638  Solved: 3327[Submit][Status][Discuss] Descripti ...

  2. bzoj1007: [HNOI2008]水平可见直线 单调栈维护凸壳

    在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为可见的,否则Li为被覆盖的.例如,对于直线:L1:y=x; L2:y=-x; L3 ...

  3. [HNOI2008]水平可见直线 单调栈

    题目描述:在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为可见的,否则Li为被覆盖的.例如,对于直线:L1:y=x; L2:y=- ...

  4. bzoj1007/luogu3194 水平可见直线 (单调栈)

    先按斜率从小到大排序,然后如果排在后面的点B和前面的点A的交点是P,那B会把A在P的右半段覆盖掉,A会把B在P的左半段覆盖掉. 然后如果我们现在又进来了一条线,它跟上一条的交点还在上一条和上上条的左边 ...

  5. [bzoj1007][HNOI2008]水平可见直线_单调栈

    水平可见直线 bzoj-1007 HNOI-2008 题目大意:给你n条直线,为你从上往下看能看见多少跳直线. 注释:能看见一条直线,当且仅当这条直线上存在一条长度>0的线段使得这条线段上方没有 ...

  6. BZOJ1007:[HNOI2008]水平可见直线(计算几何)

    Description 在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为 可见的,否则Li为被覆盖的. 例如,对于直线: L1:y ...

  7. [BZOJ1007](HNOI2008)水平可见直线(半平面交习题)

    Description 在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为可见的,否则Li为被覆盖的.     例如,对于直线:   ...

  8. bzoj1007 [HNOI2008]水平可见直线 - 几何 - hzwer.com

    Description Input 第一行为N(0 < N < 50000),接下来的N行输入Ai,Bi Output 从小到大输出可见直线的编号,两两中间用空格隔开,最后一个数字后面也必 ...

  9. [bzoj1007][HNOI2008][水平可见直线] (斜率不等式)

    Description 在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为 可见的,否则Li为被覆盖的. 例如,对于直线: L1:y ...

随机推荐

  1. hdu 2295 dlx重复覆盖+二分答案

    题目大意: 有一堆雷达工作站,安放至多k个人在这些工作站中,找到一个最小的雷达监控半径可以使k个工作人所在的雷达工作站覆盖所有城市 二分半径的答案,每次利用dlx的重复覆盖来判断这个答案是否正确 #i ...

  2. 【转载】js中对象的使用

    原文链接:http://www.jb51.net/article/90256.htm[侵删] 简单记录javascript中对象的使用 一.创建对象 //创建一个空对象 var o={}; //创建一 ...

  3. CritterAI与Recast Navigation寻路

    版权声明:本文为博主吴欣伟原创文章,未经博主允许不得转载. 前言 这篇文章写于去年,由于工作需要,故写出这个研究文档,发现网上有关此寻路库的中文资源十分稀少,故发布出来与诸位共享交流,如文中有不对之处 ...

  4. MySQL Slow Log慢日志分析【转】

    如果你的MySQL出现了性能问题,第一个需要“诊断”的就是slow log(慢日志)了. slow log文件很小,使用more less等命令就足够了.如果slow log很大怎么办?这里介绍MyS ...

  5. JavaScript 将行结构数据转化为树结构数据源(高效转化方案)

    js接收到后台的数据如下 /// 部门信息 var departRows = [{ parentDepartId: 'root', departId: 'DC', departName: '集团' } ...

  6. Netty 4.0 新的特性及需要注意的地方

    Netty 4.0 新的特性及需要注意的地方 这篇文章和你一起过下Netty的主发行版本的一些显著的改变和新特性,让你在把你的应用程序转换到新版本的时候有个概念. 项目结构改变 Netty的包名从or ...

  7. Best Time to Buy and Sell Stock(动态规划)

    Say you have an array for which the ith element is the price of a given stock on day i. If you were ...

  8. eclipse提速03 - 禁用动画

  9. SQL2008安装时,“provider: 命名管道提供程序, error: 40 - 无法打开到 SQL Server 的连接) (.Net SqlClient Data Provider)” 错误的解决方案

    错误提示: 在与 SQL Server 建立连接时出现与网络相关的或特定于实例的错误.未找到或无法访问服务器.请验证实例名称是否正确并且 SQL Server 已配置为允许远程连接. (provide ...

  10. 各种Js插件汇总;JavaScript插件

    1.jquery信息提示插件: https://blog.csdn.net/u013517229/article/details/78291841 http://www.jqueryfuns.com/ ...