题目:http://www.lydsy.com/JudgeOnline/problem.php?id=3996

转化题目给的条件

$$D = \sum_{i=1}^n \sum_{j=1}^n{A(i)A(j)B(i,j)} - \sum_{i=1}^n C(i)A(i)$$

网络流可解,如果要得到 $B(i,j)$ 的话必须选$i$物品和$j$物品然后,选择每一个物品都有其代价。

最大权闭合子图。

再流网络中割掉一条边就是舍弃一个$B(i,j)$

所以最小割即可。

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <queue> #define N 1100010
#define INF 0x3f3f3f3f using namespace std; struct edge{
int x,to,cap;
}E[N<<]; int n,B[][],C[N],totE,g[N],S,T,h[N],tot;
queue<int> q;
bool v[N]; #define p E[i].x void ade(int x,int y,int cap){
E[++totE]=(edge){y,g[x],cap}; g[x]=totE;
E[++totE]=(edge){x,g[y],}; g[y]=totE;
} bool bfs(){
memset(v,,sizeof(v));
q.push(S); h[S]=; v[S]=;
while(!q.empty()){
int x=q.front(); q.pop();
for(int i=g[x];i;i=E[i].to)
if(E[i].cap&&!v[p]){
h[p]=h[x]+;
q.push(p); v[p]=;
}
}
return v[T];
} int dinic(int x,int flow){
if(x==T||!flow) return flow;
int f=;
for(int i=g[x];i&&flow;i=E[i].to)
if(h[p]==h[x]+&&E[i].cap){
int tmp=dinic(p,min(flow,E[i].cap));
E[i].cap-=tmp; E[i^].cap+=tmp;
f+=tmp; flow-=tmp;
}
if(!f) h[x]=-;
return f;
} int main(){
scanf("%d",&n);
for(int i=,j;i<=n;i++)
for(j=;j<=n;j++) scanf("%d",&B[i][j]);
for(int i=;i<=n;i++) scanf("%d",&C[i]);
S=n*n+n+; T=S+;
for(int i=;i<=n;i++) ade(i,T,C[i]);
int ans=;
tot=n;
for(int i=;i<=n;i++)
for(int j=;j<=n;j++){
ans+=B[i][j];
ade(S,++tot,B[i][j]);
ade(tot,j,INF);
ade(tot,i,INF);
}
while(bfs()) ans-=dinic(S,INF);
printf("%d\n",ans);
return ;
}

看来真的需要补线性代数呀。

BZOJ3996 线性代数的更多相关文章

  1. [TJOI2014] [Bzoj3996] 线性代数 [网络流,最小割]

    由原式,可以推出D=Σ(i=1,n,Σ(j=1,n,A[i]*A[j]*B[i][j]))-Σ(i=1,n,A[i]*C[i]) $D=\sum\limits_{i=1}^{n}\sum\limits ...

  2. 【BZOJ3996】[TJOI2015]线性代数(最小割)

    [BZOJ3996][TJOI2015]线性代数(最小割) 题面 BZOJ 洛谷 题解 首先把式子拆开,发现我们的答案式就是这个: \[\sum_{i=1}^n\sum_{j=1}^n B_{i,j} ...

  3. 【BZOJ3996】[TJOI2015]线性代数 最大权闭合图

    [BZOJ3996][TJOI2015]线性代数 Description 给出一个N*N的矩阵B和一个1*N的矩阵C.求出一个1*N的01矩阵A.使得 D=(A*B-C)*A^T最大.其中A^T为A的 ...

  4. 【BZOJ-3996】线性代数 最小割-最大流

    3996: [TJOI2015]线性代数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1054  Solved: 684[Submit][Statu ...

  5. BZOJ3996 [TJOI2015]线性代数

    就是求$D = A \times B \times A^T - C \times A^T$ 展开也就是$$D = \sum_{i, j} A_i * A_j * B_{i, j} - \sum_{i} ...

  6. BZOJ3996[TJOI2015]线性代数——最小割

    题目描述 给出一个N*N的矩阵B和一个1*N的矩阵C.求出一个1*N的01矩阵A.使得 D=(A*B-C)*A^T最大.其中A^T为A的转置.输出D 输入 第一行输入一个整数N,接下来N行输入B矩阵, ...

  7. BZOJ3996:[TJOI2015]线性代数(最大权闭合子图)

    Description 给出一个N*N的矩阵B和一个1*N的矩阵C.求出一个1*N的01矩阵A.使得 D=(A*B-C)*A^T最大.其中A^T为A的转置.输出D Input 第一行输入一个整数N,接 ...

  8. BZOJ3996 TJOI2015线性代数

    先把矩阵式子化简 原式=∑i=1n∑j=1nA[i]∗B[i][j]∗A[j]−∑i=1nA[i]∗C[i] 因此我们发现问题转化为选取一个点所获收益是B[i][j],代价是C[i][j] 这是一个最 ...

  9. BZOJ3996 [TJOI2015]线性代数 【最小割】

    题目 给出一个NN的矩阵B和一个1N的矩阵C.求出一个1*N的01矩阵A.使得 D=(AB-C)A^T最大.其中A^T为A的转置.输出D 输入格式 第一行输入一个整数N,接下来N行输入B矩阵,第i行第 ...

随机推荐

  1. 【.Net 学习系列】-- 利用Aspose转换Excel为PDF文件

    功能: 从数据库中查询出数据 利用Aspose.cell + Excel模板绑定数据源生成Excel文件 通过Aspose.pdf + 生成好的Excel生成PDF文件 实现: 查询数据,根据Exce ...

  2. 前端进阶之路:初涉Less

    阅读目录 一.Less介绍 1.官方介绍 2.自己理解 3.Less.Sass.Stylus 二.Less使用入门 1.开发模式下使用Less 2.运行模式下使用Less 三.常见用法示例 1.从第一 ...

  3. 【面试 AOP】【第八篇】AOP的问题

    1.AOP的原理以及应用场景 面向切面编程,不修改原有代码逻辑的情况下进行逻辑增强. 使用场景:短信业务,restful返回统一响应体等等. ============================= ...

  4. Solidworks如何绘制装饰螺纹线

    1 插入-注解,装饰螺纹线   2 绘制装饰螺纹线,选择螺纹的边线,标准选择ISO,下面可以选择的范围就确定了(M6的孔,只能选择M8的螺纹或者M10的螺纹),画好之后在3D图中并没有明确的螺纹样式 ...

  5. react 使用 moment 进行 日期格式化

    在react中使用得先导入: import moment from 'moment'; 调用: npm install moment var moment = require('moment'); m ...

  6. C++简单实现对象引用计数示例(转)

    C++简单实现对象引用计数示例 #include <iostream> #include <stdio.h> using namespace std; class String ...

  7. 安卓APK瘦身

    之前打包的时候直接就用eclipse或者android studio直接生成签名文件,并没有关心大小问题,近期有人问我有没有对APK进行瘦身.对这方面内容一致没有关注过,今天试用了各种方式把项目签名a ...

  8. Java 实现原型(Prototype)模式

    public class BaseSpoon implements Cloneable {//spoon 匙, 调羹 String name; public String getName() { re ...

  9. CXF、Spring整合的SOAP Web Service服务端

    1.建工程,导入CXFjar包 2.服务接口 package com.cxf.soap; import java.util.List; import javax.jws.WebService; @We ...

  10. homebrew -v 或homebrew -doctor报错请检查 .bash_profile是否有误

    homebrew -doctor报错: /usr/local/Library/Homebrew/global.rb:109:in `split': invalid byte sequence in U ...