题目:http://www.lydsy.com/JudgeOnline/problem.php?id=3996

转化题目给的条件

$$D = \sum_{i=1}^n \sum_{j=1}^n{A(i)A(j)B(i,j)} - \sum_{i=1}^n C(i)A(i)$$

网络流可解,如果要得到 $B(i,j)$ 的话必须选$i$物品和$j$物品然后,选择每一个物品都有其代价。

最大权闭合子图。

再流网络中割掉一条边就是舍弃一个$B(i,j)$

所以最小割即可。

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <queue> #define N 1100010
#define INF 0x3f3f3f3f using namespace std; struct edge{
int x,to,cap;
}E[N<<]; int n,B[][],C[N],totE,g[N],S,T,h[N],tot;
queue<int> q;
bool v[N]; #define p E[i].x void ade(int x,int y,int cap){
E[++totE]=(edge){y,g[x],cap}; g[x]=totE;
E[++totE]=(edge){x,g[y],}; g[y]=totE;
} bool bfs(){
memset(v,,sizeof(v));
q.push(S); h[S]=; v[S]=;
while(!q.empty()){
int x=q.front(); q.pop();
for(int i=g[x];i;i=E[i].to)
if(E[i].cap&&!v[p]){
h[p]=h[x]+;
q.push(p); v[p]=;
}
}
return v[T];
} int dinic(int x,int flow){
if(x==T||!flow) return flow;
int f=;
for(int i=g[x];i&&flow;i=E[i].to)
if(h[p]==h[x]+&&E[i].cap){
int tmp=dinic(p,min(flow,E[i].cap));
E[i].cap-=tmp; E[i^].cap+=tmp;
f+=tmp; flow-=tmp;
}
if(!f) h[x]=-;
return f;
} int main(){
scanf("%d",&n);
for(int i=,j;i<=n;i++)
for(j=;j<=n;j++) scanf("%d",&B[i][j]);
for(int i=;i<=n;i++) scanf("%d",&C[i]);
S=n*n+n+; T=S+;
for(int i=;i<=n;i++) ade(i,T,C[i]);
int ans=;
tot=n;
for(int i=;i<=n;i++)
for(int j=;j<=n;j++){
ans+=B[i][j];
ade(S,++tot,B[i][j]);
ade(tot,j,INF);
ade(tot,i,INF);
}
while(bfs()) ans-=dinic(S,INF);
printf("%d\n",ans);
return ;
}

看来真的需要补线性代数呀。

BZOJ3996 线性代数的更多相关文章

  1. [TJOI2014] [Bzoj3996] 线性代数 [网络流,最小割]

    由原式,可以推出D=Σ(i=1,n,Σ(j=1,n,A[i]*A[j]*B[i][j]))-Σ(i=1,n,A[i]*C[i]) $D=\sum\limits_{i=1}^{n}\sum\limits ...

  2. 【BZOJ3996】[TJOI2015]线性代数(最小割)

    [BZOJ3996][TJOI2015]线性代数(最小割) 题面 BZOJ 洛谷 题解 首先把式子拆开,发现我们的答案式就是这个: \[\sum_{i=1}^n\sum_{j=1}^n B_{i,j} ...

  3. 【BZOJ3996】[TJOI2015]线性代数 最大权闭合图

    [BZOJ3996][TJOI2015]线性代数 Description 给出一个N*N的矩阵B和一个1*N的矩阵C.求出一个1*N的01矩阵A.使得 D=(A*B-C)*A^T最大.其中A^T为A的 ...

  4. 【BZOJ-3996】线性代数 最小割-最大流

    3996: [TJOI2015]线性代数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1054  Solved: 684[Submit][Statu ...

  5. BZOJ3996 [TJOI2015]线性代数

    就是求$D = A \times B \times A^T - C \times A^T$ 展开也就是$$D = \sum_{i, j} A_i * A_j * B_{i, j} - \sum_{i} ...

  6. BZOJ3996[TJOI2015]线性代数——最小割

    题目描述 给出一个N*N的矩阵B和一个1*N的矩阵C.求出一个1*N的01矩阵A.使得 D=(A*B-C)*A^T最大.其中A^T为A的转置.输出D 输入 第一行输入一个整数N,接下来N行输入B矩阵, ...

  7. BZOJ3996:[TJOI2015]线性代数(最大权闭合子图)

    Description 给出一个N*N的矩阵B和一个1*N的矩阵C.求出一个1*N的01矩阵A.使得 D=(A*B-C)*A^T最大.其中A^T为A的转置.输出D Input 第一行输入一个整数N,接 ...

  8. BZOJ3996 TJOI2015线性代数

    先把矩阵式子化简 原式=∑i=1n∑j=1nA[i]∗B[i][j]∗A[j]−∑i=1nA[i]∗C[i] 因此我们发现问题转化为选取一个点所获收益是B[i][j],代价是C[i][j] 这是一个最 ...

  9. BZOJ3996 [TJOI2015]线性代数 【最小割】

    题目 给出一个NN的矩阵B和一个1N的矩阵C.求出一个1*N的01矩阵A.使得 D=(AB-C)A^T最大.其中A^T为A的转置.输出D 输入格式 第一行输入一个整数N,接下来N行输入B矩阵,第i行第 ...

随机推荐

  1. ivy在eclipse中的重新加载

    ivy在eclipse中的重新加载 如果由于网速的原因,导致了ivy没有正常的加载,可以进行ivy的重新加载: 1,右键点击项目,选择属性->Java Build Path->Librat ...

  2. linux 配置maven环境变量

    vi /etc/profile 按照如下样例编辑环境变量. 编辑之后记得使用source /etc/profile命令是改动生效. 5.验证结果 在任意路径下执行mvn -version验证命令是否有 ...

  3. java平台利用jsoup开发包,抓取优酷视频播放地址与图片地址等信息。

    /********************************************************************************************  * aut ...

  4. 标C编程笔记day04 预处理、宏定义、条件编译、makefile、结构体使用

    预处理:也就是包括须要的头文件,用#include<标准头文件>或#include "自己定义的头文件" 宏定义,如:#define PI 3.1415926 查看用宏 ...

  5. node 爬虫 --- 批量下载图片

    步骤一:创建项目 npm init 步骤二:安装 request,cheerio,async 三个模块 request 用于请求地址和快速下载图片流. https://github.com/reque ...

  6. 微信小程序项目实例

    目前为止最全的微信小程序项目实例 2018年03月20日 11:38:28 Happy王子乐 阅读数:4188   wx-gesture-lock  微信小程序的手势密码 WXCustomSwitch ...

  7. python-一个小练习

    myseq = '''[a:1,b:2,c:3] [a:3,b:3,c:8] [a:7,c:2:m:7,r:4] [a:2,c:4:m:6,r:4] [a:3,b:2,c:7,o:5]''' def ...

  8. ruby简单的基础 2

    1.代码块 代码块是用大括号或者do...end括起来的一系列代码.{ #this is a block} do #this is a blockend [1,2,3,4,5].each {|i| p ...

  9. linux 命令之 watch

    watch能够帮你监測一个命令的执行结果,省得你一遍遍的手动执行.在Linux下.watch是周期性的执行下个程序.并全屏显示执行结果.你能够拿他来监測你想要的一切命令的结果变化,比方 tail 一个 ...

  10. Linux环境下如何查找哪个线程使用CPU最长

    top -H -p pid 查看端口是否被占用: netstat -apn|grep 80