$n \leq 2000000$的排列,问有多少满足:存在个$i$,使得$p_i \neq n$,且$p_j<p_i,j \in [i+1,i+K]$,$K \leq 2000000$是给定常数。膜$1e9+7$。

排列题还是比较菜。。

这次的切入点依然是排列题的经典套路--考虑将$n$加入$n-1$的合法排列,从而建立递推关系。

先从答案要求入手,假如把$n$插进位置$i$,那么$i$之前的序列必须已经合法,否则要么接下来一个数是$n$,后面$K$个数一定$<n$,不合法,要么这序列根本就不合法,就gg。也就是说,$n$之前的数字的大小关系已经确定了。确定大小关系的情况可以开始递推:$D(i)$表示$i$在位置$i$时,剩下$i-1$个数乱排时的合法排列数——$n$(注意,这里真的是$n$)在位置$i$时,前$i-1$个数一旦确定,他们的大小关系必须如同$D(i)$的方案,然后其他的数乱排列。因此最终答案为$\sum_{i=1}^{n}D(i)\frac{(n-1)!}{(i-1)!}$。搞定。

注意这里通过大小关系把$n$变成更小的东西。

现在试着求$D(i)$。首先$i<=K$时$D(i)=0$这实际上排除了一重条件$p_i \neq n$,因为此时造成$p_j<p_i,j \in [i+1,i+K]$的只有非$n$的数。好那就来看看剩下最大的$n-1$。当$n-1$放在前$i-K-1$个位置时,它就是符合条件的$i$。当它放在$i-K$往后的位置时,又来!此时$n-1$后边是不可能有非法$i$了,但前面一定有,大小关系又是$D$!于是有$D(n)=(n-K-1)(n-2)!+\sum_{i=n-K}^{n-1}D(i)*\frac{(n-2)!}{(i-1)!}$,把$(n-2)!$提到前面,记个前缀和即可。

 //#include<iostream>
#include<cstring>
#include<cstdlib>
#include<cstdio>
//#include<queue>
//#include<time.h>
//#include<complex>
#include<algorithm>
#include<stdlib.h>
using namespace std; int n,K;
#define maxn 2000011
const int mod=1e9+;
int fac[maxn],inv[maxn]; int powmod(int a,int b)
{
int ans=;
while (b)
{
if (b&) ans=1ll*a*ans%mod;
a=1ll*a*a%mod; b>>=;
}
return ans;
} int sum[maxn],f[maxn];
int main()
{
scanf("%d%d",&n,&K);
fac[]=; for (int i=;i<=n;i++) fac[i]=fac[i-]*1ll*i%mod;
inv[n]=powmod(fac[n],mod-); for (int i=n;i>=;i--) inv[i-]=1ll*inv[i]*i%mod;
for (int i=;i<=K;i++) f[i]=sum[i]=;
for (int i=K+;i<=n;i++)
{
f[i]=(1ll*(i-K-)*fac[i-]%mod+1ll*fac[i-]*(sum[i-]+mod-sum[i-K-])%mod)%mod;
sum[i]=(sum[i-]+1ll*f[i]*inv[i-])%mod;
}
int ans=;
for (int i=;i<=n;i++) ans=(ans+1ll*(sum[i]-sum[i-]+mod)*fac[n-])%mod;
printf("%d\n",ans);
return ;
}

Codeforces889C. Maximum Element的更多相关文章

  1. 【CF886E】Maximum Element DP

    [CF886E]Maximum Element 题意:小P有一个1-n的序列,他想找到整个序列中最大值的出现位置,但是他觉得O(n)扫一遍太慢了,所以它采用了如下方法: 1.逐个遍历每个元素,如果这个 ...

  2. 【CodeForces】889 C. Maximum Element 排列组合+动态规划

    [题目]C. Maximum Element [题意]给定n和k,定义一个排列是好的当且仅当存在一个位置i,满足对于所有的j=[1,i-1]&&[i+1,i+k]有a[i]>a[ ...

  3. Codeforces 889C Maximum Element(DP + 计数)

    题目链接  Maximum Element 题意  现在有这一段求序列中最大值的程度片段: (假定序列是一个1-n的排列) int fast_max(int n, int a[]) { int ans ...

  4. Codeforces 886E Maximum Element 组合数学 + dp

    我们定义dp[ i ]表示长度为 i 的序列, 最后没有一个==k的时候返回的方案数, 也就是最后强制返回 i 的方案数. 我们能得到dp方程   dp[ i ] = sum(dp[ i - j - ...

  5. CF886E Maximum Element

    $ \color{#0066ff}{ 题目描述 }$ 从前有一个叫Petya的神仙,嫌自己的序列求max太慢了,于是将序列求max的代码改成了下面这个样子: int fast_max(int n,in ...

  6. Codeforces - 102222A - Maximum Element In A Stack - 模拟

    https://codeforc.es/gym/102222/problem/F 注意到其实用unsigned long long不会溢出. #include<bits/stdc++.h> ...

  7. The 2018 ACM-ICPC Chinese Collegiate Programming Contest Maximum Element In A Stack

    //利用二维数组模拟 #include <iostream> #include <cstdio> #include <cstring> #include <s ...

  8. Codeforces Round #445 Div. 1 C Maximum Element (dp + 组合数学)

    题目链接: http://codeforces.com/contest/889/problem/C 题意: 给你 \(n\)和 \(k\). 让你找一种全排列长度为\(n\)的 \(p\),满足存在下 ...

  9. 【CF886E】Maximum Element

    题目 考虑正难则反,答案即为\(n!-\text{返回值为n的排列数}\) 一个排列的返回值为\(n\),当且仅当在\(n\)出现之前没有一个数后面有连续\(k\)个小于它的数 设\(f_i\)表示\ ...

随机推荐

  1. 关于IE 对 $.get 缓存的记录

    最近在IE9中碰到一个问题是, 当我对某个角色进行修改的时候,再点击查询还是修改之前的内容,但是实际数据库已经修改成功,纠结了好一会儿之后,才发现是 $.get请求的问题. 因为  IE对get请求, ...

  2. c/s架构搭建

    1.socket(套接字) Socket是应用层与TCP/IP协议族通信的中间软件抽象层,它是一组接口.在设计模式中,Socket其实就是一个门面模式,它把复杂的TCP/IP协议族隐藏在Socket接 ...

  3. PKU_campus_2017_K Lying Island

    思路: 题目链接http://poj.openjudge.cn/practice/C17K/ 状压dp.dp[i][j]表示第i - k人到第i人的状态为j的情况下前i人中最多有多少好人. 实现: # ...

  4. Bean with name 'xxxService' has been injected into other beans [xxxServiceA,xxxServiceB] in its raw version as part of a circular reference, but has eventually been wrapped

    启动项目,通过@Autowired注入对象,出现循环依赖,导致项目启动失败,具体报错信息如下: Exception encountered during context initialization ...

  5. Java练习题02

    问题: 编程求一个整数数组的最大值.最小值.平均值和所有元素的和. 代码: public class Page99{     public static void main(String args[] ...

  6. Zotero文献管理神器使用

    为什么使用Zotero管理论文? 1.可以从网上剪藏 2.可以查询 3.有作者 标题 期刊 索引 4.word自动生成论文索引 把pdf文件导入Zotero 按住ctrl+shift拖动pdf文件,就 ...

  7. 3.12 在运算和比较时使用NULL值

    问题:NULL值永远不会等于或不等于任何值,也包括NULL值自己,但是需要像计算真实值一样计算可为空列的返回值.例如,需要在表emp中查出所有比“WARD”提成(COMM)低的员工,提成为NULL(空 ...

  8. laravel homestead comoser install 报错

    项目部署的时候composer install报错 说那个依赖包没有安装成功需要回滚删除但是删除不了 解决: 要配置共享文件 注:使用 NFS 的话,需要安装 vagrant-winnfsd 插件.该 ...

  9. html upload_file 对象(2018/02/26)工作收获

    php.ini中可以设置上传文件的大小,如果超过设置大小,上传失败.$_File 数组当中接受到的文件对象size为0

  10. Vue项目结构梳理

    Vue项目结构图: 简单介绍目录结构 build目录是一些webpack的文件,配置参数什么的,一般不用动 config是vue项目的基本配置文件 node_modules是项目中安装的依赖模块 sr ...