$n \leq 2000000$的排列,问有多少满足:存在个$i$,使得$p_i \neq n$,且$p_j<p_i,j \in [i+1,i+K]$,$K \leq 2000000$是给定常数。膜$1e9+7$。

排列题还是比较菜。。

这次的切入点依然是排列题的经典套路--考虑将$n$加入$n-1$的合法排列,从而建立递推关系。

先从答案要求入手,假如把$n$插进位置$i$,那么$i$之前的序列必须已经合法,否则要么接下来一个数是$n$,后面$K$个数一定$<n$,不合法,要么这序列根本就不合法,就gg。也就是说,$n$之前的数字的大小关系已经确定了。确定大小关系的情况可以开始递推:$D(i)$表示$i$在位置$i$时,剩下$i-1$个数乱排时的合法排列数——$n$(注意,这里真的是$n$)在位置$i$时,前$i-1$个数一旦确定,他们的大小关系必须如同$D(i)$的方案,然后其他的数乱排列。因此最终答案为$\sum_{i=1}^{n}D(i)\frac{(n-1)!}{(i-1)!}$。搞定。

注意这里通过大小关系把$n$变成更小的东西。

现在试着求$D(i)$。首先$i<=K$时$D(i)=0$这实际上排除了一重条件$p_i \neq n$,因为此时造成$p_j<p_i,j \in [i+1,i+K]$的只有非$n$的数。好那就来看看剩下最大的$n-1$。当$n-1$放在前$i-K-1$个位置时,它就是符合条件的$i$。当它放在$i-K$往后的位置时,又来!此时$n-1$后边是不可能有非法$i$了,但前面一定有,大小关系又是$D$!于是有$D(n)=(n-K-1)(n-2)!+\sum_{i=n-K}^{n-1}D(i)*\frac{(n-2)!}{(i-1)!}$,把$(n-2)!$提到前面,记个前缀和即可。

 //#include<iostream>
#include<cstring>
#include<cstdlib>
#include<cstdio>
//#include<queue>
//#include<time.h>
//#include<complex>
#include<algorithm>
#include<stdlib.h>
using namespace std; int n,K;
#define maxn 2000011
const int mod=1e9+;
int fac[maxn],inv[maxn]; int powmod(int a,int b)
{
int ans=;
while (b)
{
if (b&) ans=1ll*a*ans%mod;
a=1ll*a*a%mod; b>>=;
}
return ans;
} int sum[maxn],f[maxn];
int main()
{
scanf("%d%d",&n,&K);
fac[]=; for (int i=;i<=n;i++) fac[i]=fac[i-]*1ll*i%mod;
inv[n]=powmod(fac[n],mod-); for (int i=n;i>=;i--) inv[i-]=1ll*inv[i]*i%mod;
for (int i=;i<=K;i++) f[i]=sum[i]=;
for (int i=K+;i<=n;i++)
{
f[i]=(1ll*(i-K-)*fac[i-]%mod+1ll*fac[i-]*(sum[i-]+mod-sum[i-K-])%mod)%mod;
sum[i]=(sum[i-]+1ll*f[i]*inv[i-])%mod;
}
int ans=;
for (int i=;i<=n;i++) ans=(ans+1ll*(sum[i]-sum[i-]+mod)*fac[n-])%mod;
printf("%d\n",ans);
return ;
}

Codeforces889C. Maximum Element的更多相关文章

  1. 【CF886E】Maximum Element DP

    [CF886E]Maximum Element 题意:小P有一个1-n的序列,他想找到整个序列中最大值的出现位置,但是他觉得O(n)扫一遍太慢了,所以它采用了如下方法: 1.逐个遍历每个元素,如果这个 ...

  2. 【CodeForces】889 C. Maximum Element 排列组合+动态规划

    [题目]C. Maximum Element [题意]给定n和k,定义一个排列是好的当且仅当存在一个位置i,满足对于所有的j=[1,i-1]&&[i+1,i+k]有a[i]>a[ ...

  3. Codeforces 889C Maximum Element(DP + 计数)

    题目链接  Maximum Element 题意  现在有这一段求序列中最大值的程度片段: (假定序列是一个1-n的排列) int fast_max(int n, int a[]) { int ans ...

  4. Codeforces 886E Maximum Element 组合数学 + dp

    我们定义dp[ i ]表示长度为 i 的序列, 最后没有一个==k的时候返回的方案数, 也就是最后强制返回 i 的方案数. 我们能得到dp方程   dp[ i ] = sum(dp[ i - j - ...

  5. CF886E Maximum Element

    $ \color{#0066ff}{ 题目描述 }$ 从前有一个叫Petya的神仙,嫌自己的序列求max太慢了,于是将序列求max的代码改成了下面这个样子: int fast_max(int n,in ...

  6. Codeforces - 102222A - Maximum Element In A Stack - 模拟

    https://codeforc.es/gym/102222/problem/F 注意到其实用unsigned long long不会溢出. #include<bits/stdc++.h> ...

  7. The 2018 ACM-ICPC Chinese Collegiate Programming Contest Maximum Element In A Stack

    //利用二维数组模拟 #include <iostream> #include <cstdio> #include <cstring> #include <s ...

  8. Codeforces Round #445 Div. 1 C Maximum Element (dp + 组合数学)

    题目链接: http://codeforces.com/contest/889/problem/C 题意: 给你 \(n\)和 \(k\). 让你找一种全排列长度为\(n\)的 \(p\),满足存在下 ...

  9. 【CF886E】Maximum Element

    题目 考虑正难则反,答案即为\(n!-\text{返回值为n的排列数}\) 一个排列的返回值为\(n\),当且仅当在\(n\)出现之前没有一个数后面有连续\(k\)个小于它的数 设\(f_i\)表示\ ...

随机推荐

  1. Java基础50题test3—水仙花数

    水仙花数 题目:打印出所有的"水仙花数",所谓"水仙花数"是指一个三位数,其各位数字立方和等于该数本身.例 如:153 是一个"水仙花数", ...

  2. 各个浏览器CSS中的Bugs及解决方案

    Bugs及解决方案列表(以下实例默认运行环境都为Standard mode): 如何在IE6及更早浏览器中定义小高度的容器? 方法: #test{overflow:hidden;height:1px; ...

  3. 031_spark架构原理

    spark核心组件 driver master worker executor task(只有task是线程) 核心组件的原理图解

  4. ZigBee cc2530芯片学习 error记录(1)

    ZigBee cc2530芯片学习 error记录   Error[e46]: Undefined external "LcdInit" referred in main( xxx ...

  5. Database coalesce

    coalesce 语法 注意:连接操作符“||”是一个值得注意的例外. 例如,空值加任何值都是空值,空值 乘任何值也都是空值,依此类推. 参数 expression 任何类型的表达式. n 表示可以指 ...

  6. [CF] 986 A. Fair

    http://codeforces.com/problemset/problem/986/A n个点的无向连通图,每个点有一个属性,求每个点到s个不同属性点的最短距离 依稀记得那天晚上我和Menteu ...

  7. docker 私有镜像服务器搭建

    1.准备一台服务器A(已安装docker, IP:192.168.39.111) 2.在服务器A上通过运行registry容器进行搭建 docker run -itd -v /my_registry: ...

  8. 9. InnoDB通用表空间

    9. InnoDB通用表空间 通用表空间是InnoDB 使用CREATE TABLESPACE语法创建的共享表空间.本节中的以下主题描述了常规表空间功能和功能: 通用表空间功能 创建通用表空间 将表添 ...

  9. 如何用纯 CSS 创作一个金属光泽 3D 按钮特效

    效果预览 在线演示 按下右侧的"点击预览"按钮在当前页面预览,点击链接全屏预览. https://codepen.io/zhang-ou/full/MGeRRO 可交互视频教程 此 ...

  10. 数据结构( Pyhon 语言描述 ) — — 第4章:数据和链表结构

    数据结构是表示一个集合中包含的数据的一个对象 数组数据结构 数组是一个数据结构 支持按照位置对某一项的随机访问,且这种访问的时间是常数 在创建数组时,给定了用于存储数据的位置的一个数目,并且数组的长度 ...