网上查阅一些资料,收集整理如下:

1、 通用性

spark更加通用,spark提供了transformation和action这两大类的多个功能api,另外还有流式处理sparkstreaming模块、图计算GraphX等等;mapreduce只提供了map和reduce两种操作,流计算以及其他模块的支持比较缺乏。

2、 内存利用和磁盘开销

MapReduce的设计:中间结果需要写磁盘,Reduce写HDFS,多个MR之间通过HDFS交换数据,,可以提高可靠性,减少内存占用,但是牺牲了性能。

Spark默认把结果写到内存, Spark的DAGScheduler相当于一个改进版的MapReduce,如果计算不涉及与其他节点进行数据交换,Spark可以在内存中一次性完成这些操作,也就是中间结果无须落盘,减少了磁盘IO的操作。(但是,如果计算过程中涉及数据交换,Spark也是会把shuffle的数据写磁盘的!!!),还有一方面就是对shuffle操作的优化,spark提供Cache机制来支持需要反复迭代计算或者多次数据共享,减少中间文件的生成,减少数据读取的IO开销。另外DAG相比MapReduce在大多数情况下可以减少shuffle次数。

3、 任务调度

mapreduce任务调度和启动开销大;

spark线程池模型减少task启动开销

4、 排序

Spark 避免不必要的排序操作,由于mapreduce会对数据进行排序,所以reduce操作必须等到文件全部生成并进行排序之后才可以进行。spark不是这种自动排序,因此可以生成一点,刷新ShuffleMapTask缓冲区到文件中,然后直接进行reduce。

Hadoop MapReduce是sort-based,进入combine()和reduce()的records必须先sort,这样的好处在于combine/reduce()可以处理大规模的数据,因为其输入数据可以通过外排得到(mapper对每段数据先做排序, reducer的shuffle对排好序的每段数据做归并) 。目前的Spark默认选择的是hash-based,通常使用 HashMap来对shuffle来的数据进行aggregate,不会对数据进行提前排序。如果用户需要经过排序的数据,那么需要自己调用类似sortByKey()的操作。

5、 迭代

mapreduce不适合迭代计算(如机器学习、图计算等),交互式处理(数据挖掘) 和流式处理(点击日志分析), 其中间结果需要落地,需要保存到磁盘,这样必然会有磁盘io操做,影响性能。

spark把运算的中间数据存放在内存,迭代计算效率更高,更适合做需要反复迭代的计算

mapreduce一个job里,只有一对M与R,而spark的一个job里可以有多个M多个R。mapreduce需要好多个job来完成的spark一个job就完成了,而且spark的除了shuffle算子需要落盘,其他的都不需要,省去了io开销。

6、 错误恢复机制

Spark的错误恢复机制在很多场景会比MR的错误恢复机制的代价低,这也是性能提升的一个点。

spark容错性高,它通过弹性分布式数据集RDD来实现高效容错,RDD是一组分布式的存储在节点内存中的只读性质的数据集,这些集合是弹性的,某一部分丢失或者出错,可以通过整个数据集的计算流程的血缘关系来实现重建;mapreduce的话容错可能只能重新计算了,成本较高。

另外spark提供cache机制,当步骤1-10中第10步计算失败,假如第九步进行了缓存,那么就可以不需要重新计算直接取缓存了。

7、 复杂性

spark框架和生态更为复杂,首先有RDD、血缘lineage(保存了RDD的依赖关系)、执行时的有向无环图DAG、stage划分等等,很多时候spark作业都需要根据不同业务场景的需要进行调优已达到性能要求;

mapreduce框架及其生态相对较为简单,对性能的要求也相对较弱,但是运行较为稳定,适合长期后台运行。

总结,spark生态更为丰富,功能更为强大、性能更佳,适用范围更广;mapreduce更简单、稳定性好、适合离线海量数据挖掘计算。

spark和 mapreduce的比较的更多相关文章

  1. Alluxio增强Spark和MapReduce存储能力

    Alluxio的前身为Tachyon.Alluxio是一个基于内存的分布式文件系统:Alluxio以内存为中心设计,他处在诸如Amazon S3. Apache HDFS 或 OpenStack Sw ...

  2. Spark 颠覆 MapReduce 保持的排序记录

    在过去几年,Apache Spark的採用以惊人的速度添加着,通常被作为MapReduce后继,能够支撑数千节点规模的集群部署. 在内存中数 据处理上,Apache Spark比MapReduce更加 ...

  3. 详解MapReduce(Spark和MapReduce对比铺垫篇)

    本来笔者是不打算写MapReduce的,但是考虑到目前很多公司还都在用这个计算引擎,以及后续要讲的Hive原生支持的计算引擎也是MapReduce,并且为Spark和MapReduce的对比做铺垫,笔 ...

  4. 重要 | Spark和MapReduce的对比,不仅仅是计算模型?

    [前言:笔者将分上下篇文章进行阐述Spark和MapReduce的对比,首篇侧重于"宏观"上的对比,更多的是笔者总结的针对"相对于MapReduce我们为什么选择Spar ...

  5. Spark 与 MapReduce的区别

    学习参考自 http://spark-internals.books.yourtion.com/markdown/4-shuffleDetails.html 1.  Shuffle read 边 fe ...

  6. spark VS mapreduce

    Apache Spark,一个内存数据处理的框架,现在是一个顶级Apache项目. 这是Spark迈向稳定的重要一步,因为它越来越多地在下一代大数据应用中取代MapReduce. MapReduce是 ...

  7. spark与mapreduce的区别

    spark是通过借鉴Hadoop mapreduce发展而来,继承了其分布式并行计算的优点,并改进了mapreduce明显的缺陷,具体表现在以下几方面: 1.spark把中间计算结果存放在内存中,减少 ...

  8. Spark之MapReduce原理

    参考http://www.cnblogs.com/wuyudong/p/mapreduce-principle.html MapReduce   我们来拆开看: Mapping(映射)对集合里的每个目 ...

  9. spark和mapreduce的区别

    spark和mapreduced 的区别map的时候处理的时候要落地磁盘 每一步都会落地磁盘 reduced端去拉去的话 基于磁盘的迭代spark是直接再内存中进行处理 dag 执行引擎是一个job的 ...

随机推荐

  1. Mac系统 安装Photoshop CC 2018破解版

    应用场景 本人从事前端行业,但是工作中有时也需要会点PS技能,之前一直使用window系统,突然换了Mac其他软件基本都差不多安装完了,就剩下比较难搞的PS.刚开始按照网上乱七八槽的教程下载过好多次都 ...

  2. [七年技术总结系列][理论篇]-RBAC权限模型由浅入深

    权限部分将分两章介绍,第一章由浅入深介绍权限理论知识及应用,第二章介绍具体实现.后期再讲述中间件的使用时,还会插入一些权限内容,本质上属于中间件的应用. 权限模块是业务系统最常见.最基本的子集.本章假 ...

  3. windows与office激活

    暴风官网:www.baofengjihuo.com

  4. Java8系列 (一) Lambda表达式

    函数式编程 在介绍Lambda表达式之前, 首先需要引入另一个概念, 函数式编程. 函数式编程是一种编程范式, 也就是如何编写程序的方法论.它的核心思想是将运算过程尽量写成一系列嵌套的函数调用,关注的 ...

  5. electron快捷键

    我们分为在主进程中注册快捷键和在渲染进程中注册快捷键 在主进程中我们有两种方式 一 利用[Menu]来模拟快捷键,只有app获得焦点时才生效,很少使用 const { Menu, MenuItem } ...

  6. 解决tortoiseSvn 访问版本库的时候一直初始化,或者无响应的问题

    现象 svn访问版本库时一直提示: please wait while the repository browser is initializing 没有反应,甚至3-4分钟才会出来,即便出来也会很卡 ...

  7. day27作业

    FTP需求 客户端可以注册登录 client:输入一个login sever:执行login 客户端登陆后可以选择文件夹上传与下载 client:输入一个upload,download sever:执 ...

  8. git命令(转)

    git工作模式 工作区(代码) 暂存区 版本区(提交区.历史区) 初始化 git config --global user.name *** git config --global user.emai ...

  9. SpringCloud之链路追踪整合Sleuth(十三)

    前言 SpringCloud 是微服务中的翘楚,最佳的落地方案. 在一个完整的微服务架构项目中,服务之间的调用是很复杂的,当其中某一个服务出现了问题或者访问超时,很 难直接确定是由哪个服务引起的,所以 ...

  10. Dubbo 优雅停机演进之路

    一.前言 在 『ShutdownHook- Java 优雅停机解决方案』 一文中我们聊到了 Java 实现优雅停机原理.接下来我们就跟根据上面知识点,深入 Dubbo 内部,去了解一下 Dubbo 如 ...