URAL-1982-Electrification Plan最小生成树或并查集
题意:在一个无向图中,给你几个源点,找出把所有点连接到源点后最小的消费;
可以利用并查集:
先用结构体把每个边存起来,再按照消费大小排序。之后从消费小的到大的一个个尝试,两个点需要连接的话,连接上同时把消费也算上去;
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <string>
const int inf = 0x3f3f3f; using namespace std; int n,k;
int fa[+];
struct node
{
int from,to;
int c;
}a[];
bool cmp(node a,node b)
{
return a.c<b.c;
}
void init(){
for(int i=;i<=n;i++)
fa[i] = i;
}
int find(int x)
{
if(fa[x]==x)return x;
else return fa[x] = find(fa[x]);
}
int uni(int x,int y)
{
if(fa[x]==-&&fa[y]==-)return ; //(**)
int px = find(x);
int py = find(y);
if(px==py)return ;
else
{
fa[px] = py;
return ;
}
} int main(){
scanf("%d%d",&n,&k);
init();
for(int i=;i<=k;i++)
{
int x;
scanf("%d",&x);
fa[x]=-; //这个操作我其实不是很明确,我以我的理解加上了(**)这句,
} //表示源点之间不用连接,但是别人写的好像不用加这句话。
int cnt =;
for(int i=;i<=n;i++)
{
for(int j=;j<=n;j++)
{
int cost;
scanf("%d",&cost);
if(cost==)continue;
a[++cnt].c=cost;
a[cnt].from = i;
a[cnt].to =j;
}
}
sort(a+,a++cnt,cmp);
int ans = ;
for(int i=;i<=cnt;i++)
{
if(uni(a[i].from,a[i].to))
{
ans += a[i].c;
}
}
printf("%d\n",ans);
return ;
}
我自己就做了一个预处理,(直接把读入的用uni连接起来
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <string>
const int inf = 0x3f3f3f; using namespace std; int n,k;
int fa[+];
struct node
{
int from,to;
int c;
}a[];
bool cmp(node a,node b)
{
return a.c<b.c;
}
void init(){
for(int i=;i<=n;i++)
fa[i] = i;
}
int find(int x)
{
if(fa[x]==x)return x;
else return fa[x] = find(fa[x]);
}
int uni(int x,int y)
{
int px = find(x);
int py = find(y);
if(px==py)return ;
else
{
fa[px] = py;
return ;
}
} int main(){
scanf("%d%d",&n,&k);
init();
int last=-;
for(int i=;i<=k;i++)
{
int x;
scanf("%d",&x);
if(last!=-)
{
int suibian;
suibian =uni(last,x); //不理解别人把fa[x]=-1的操作;
last = x; //自己就先预处理连接好了;
}
else last=x;
}
int cnt =;
for(int i=;i<=n;i++)
{
for(int j=;j<=n;j++)
{
int cost;
scanf("%d",&cost);
if(cost==)continue;
a[++cnt].c=cost;
a[cnt].from = i;
a[cnt].to =j;
}
}
sort(a+,a++cnt,cmp);
int ans = ;
for(int i=;i<=cnt;i++)
{
if(uni(a[i].from,a[i].to))
{
ans += a[i].c;
}
}
printf("%d\n",ans);
return ;
}
URAL-1982-Electrification Plan最小生成树或并查集的更多相关文章
- timus 1982 Electrification Plan(最小生成树)
Electrification Plan Time limit: 0.5 secondMemory limit: 64 MB Some country has n cities. The govern ...
- Timusoj 1982. Electrification Plan
http://acm.timus.ru/problem.aspx?space=1&num=1982 1982. Electrification Plan Time limit: 0.5 sec ...
- Electrification Plan 最小生成树(prim+krusl+堆优化prim)
题目 题意: 无向图,给n个城市,n*n条边,每条边都有一个权值 代表修路的代价,其中有k个点有发电站,给出这k个点的编号,要每一个城市都连到发电站,问最小的修路代价. 思路: prim:把发电站之间 ...
- 搭桥|codevs1002|最小生成树|Prim|并查集|Elena
1002 搭桥 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 黄金 Gold 题目描述 Description 有一矩形区域的城市中建筑了若干建筑物,如果某两个单元格有一个点 ...
- 线段树、最短路径、最小生成树、并查集、二分图匹配、最近公共祖先--C++模板
线段树(区间修改,区间和): #include <cstdio> #include <iostream> #include <cstring> using name ...
- URAL 1671 Anansi's Cobweb (并查集)
题意:给一个无向图.每次查询破坏一条边,每次输出查询后连通图的个数. 思路:并查集.逆向思维,删边变成加边. #include<cstdio> #include<cstring> ...
- hdu5441(2015长春赛区网络赛1005)类最小生成树、并查集
题意:有一张无向图,一些点之间有有权边,某条路径的值等于路径上所有边的边权的最大值,而某个点对的值为这两点间所有路径的值的最小值,给出多个询问,每个询问有一个值,询问有多少点对满足其值小于等于询问值. ...
- 2018.11.02 NOIP模拟 飞越行星带(最小生成树/二分+并查集)
传送门 发现题目要求的就是从下到上的瓶颈路. 画个图出来发现跟去年noipnoipnoip提高组的奶酪差不多. 于是可以二分宽度+并查集检验,或者直接求瓶颈. 代码
- URAL-1982 Electrification Plan 最小生成树
题目链接:http://acm.timus.ru/problem.aspx?space=1&num=1982 题意:无向图,给n个点,n^2条边,每条边有个一权值,其中有k个点有发电站,给出这 ...
随机推荐
- 游戏开发3D基础知识
概念学习: 向量 向量简介 我们将所有彼此平行的向量进行平移,使其起点与坐标原点重合,当某一向量的起始端与坐标原点重合,我们成该向量处于标准位置.这样,我们就可用向量的终点坐标来描述一个处于标准位置的 ...
- 后端基于方法的权限控制--Spirng-Security
后端基于方法的权限控制--Spirng-Security 默认情况下, Spring Security 并不启用方法级的安全管控. 启用方法级的管控后, 可以针对不同的方法通过注解设置不同的访问条件: ...
- JDK1.8源码分析03之idea搭建源码阅读环境
序言:上一节说了阅读源码的顺序,有了一个大体的方向,咱们就知道该如何下手.接下来,就要搭建一个方便阅读源码及debug的环境.有助于跟踪源码的调用情况. 目前新开发的项目, 大多数都是基于JDK1.8 ...
- 【Java例题】2.3 计算银行存款本息
3.计算银行存款本息. 用户输入存款金额money,存款期years和年利率rate, 根据公式: sum=money(1+rate)^years ,计算到期存款本息. 这里的"^" ...
- Go中的结构体
前面我们或多或少的都使用了结构体这种数据结构,本身结构体也有很多特性,我们一一来看. 结构体的作用是将一个或者多个任一类型的变量组合在一起的数据类型,类似于我们在Java中class的作用.在结构体重 ...
- css常用代码块
顶部固定导航栏 | css position: fixed; top: 0; left: 0; z-index: 9999; width: 100%; height: 48px; border-top ...
- 【Kubernetes 系列二】从虚拟机讲到 Kubernetes 架构
目录 什么是虚拟机? 什么是容器? Docker Kubernetes 架构 Kubernetes 对象 基础设施抽象 在认识 Kubernetes 之前,我们需了解下容器,在了解容器之前,我们得先知 ...
- Mac安装Homebrew的那些事儿
Mac安装Homebrew的那些事儿 最近小明刚换置了一个 Mac 本,想搭建一个属于自己的博客网站,需要用到 Node.js 环境,而Node.js 在 MacOS 中是由 Homebrew 进行安 ...
- node 删除和复制文件或文件夹
[toc] 创建时间:2019-08-12 注意:在win10,v10.16.1 环境运行无问题 首先引入相关包(会在使用处具体说明): const fs = require('fs') const ...
- mongoDB的CRUD的总结
今天开始接触非关系型数据库的mongoDB,现在将自己做的笔记发出来,供大家参考,也便于自己以后忘记了可以查看. 首先,mongoDB,是一种数据库,但是又区别与mysql,sqlserver.orc ...