感觉这个题挺妙的......

考虑最暴力的\(dp\),令\(f[i][j]\)表示生成大小为\(i\)的序列,积为\(j\)的方案数,这样做是\(O(nm)\)的。

转移就是

\[f[i+1][j] = \sum\limits_{ab\equiv j(mod\ m)} f[i][a]f[1][b]
\]

后面那个柿子很像卷积?但下标是乘法......好像不那么好卷。

套路的去个对数啥的把他转化成加法?比方说取个ln

那底数怎么确定呢?

我们想把\(1...m-1\)这\(m-1\)个数通过取对数的方法映射到\(0,1,...m-2\)这些不同的数上。

咋办?以原根为底就好辣!(下面默认\(m\)原根是\(g\),\(\log a = \log_{g} a\))。

因为根据定义我们知道\(g^{m-1} \equiv 1\ (mod \ m)\),且\(g^0,g^1,\cdots,g^{m-2}\)是\(m-1\)个不同的数。

所以在上面的\(dp\)转移中,我们令\(A = \log a, B = \log b, C = \log j\),然后再改一下状态,转移就变成了

\[f[i+1][C] = \sum\limits_{A+B=C} f[i][A]f[1][B]
\]

这样一阶段的转移就是卷积的形式,且转移方式是相同的。

但是\(n\)很大.......因为转移的特殊性,我们可以类似快速幂那样倍增(有点像矩乘?)

具体边界还有一些要注意的地方就看代码吧:

#include <bits/stdc++.h>
using namespace std;
const int N=20100,P=1004535809,gen=3,igen=334845270;
inline int add(int x,int y,int mod=P){
return x+y>=mod?x+y-mod:x+y;
}
inline int sub(int x,int y,int mod=P){
return x-y<0?x-y+mod:x-y;
}
inline int fpow(int x,int y,int mod=P){
int ret=1; for(x%=mod;y;y>>=1,x=1ll*x*x%mod)
if(y&1) ret=1ll*ret*x%mod;
return ret;
}
int rev[N];
void init(int n){
for(int i=0;i<n;i++)
rev[i]=rev[i>>1]>>1|((i&1)?n>>1:0);
}
void ntt(int *f,int n,int flg){
for(int i=0;i<n;i++) if(rev[i]<i) swap(f[i],f[rev[i]]);
for(int len=2,k=1;len<=n;len<<=1,k<<=1){
int wn=fpow(flg==1?gen:igen,(P-1)/len);
for(int i=0;i<n;i+=len){
for(int w=1,j=i;j<i+k;j++,w=1ll*w*wn%P){
int tmp=1ll*f[j+k]*w%P;
f[j+k]=sub(f[j],tmp),f[j]=add(f[j],tmp);
}
}
}
if(flg==-1){
int inv=fpow(n,P-2);
for(int i=0;i<n;i++) f[i]=1ll*f[i]*inv%P;
}
}
int limit,m,n,X,C;
void mult(int *f,int *g){
static int F[N],G[N];
for(int i=0;i<m-1;i++) F[i]=f[i],G[i]=g[i];
for(int i=m-1;i<limit;i++) F[i]=G[i]=0;
ntt(F,limit,1),ntt(G,limit,1);
for(int i=0;i<limit;i++) F[i]=1ll*F[i]*G[i]%P;
ntt(F,limit,-1);
for(int i=0;i<m-1;i++) f[i]=add(F[i],F[i+m-1]); // 这里挺重要的qwq,因为卷起来后次数是2(m-1)的,又因为m-1一个循环,要加上去
} int chk(int g){
for(int i=2;i*i<=m-1;i++)
if((m-1)%i==0&&(fpow(g,i,m)==1||fpow(g,(m-1)/i,m)==1)) return 0;
return 1;
}
int getG(){
for(int i=2;;i++) if(chk(i))return i;
}
map<int,int> id;
void getans(int *f,int n,int *ans){
for(ans[id[1]]=1;n;n>>=1,mult(f,f)) // 一开始的时候只有f[0][1]是1
if(n&1) mult(ans,f);
}
int f[N],ans[N];
int main(){
scanf("%d%d%d%d",&n,&m,&X,&C);
limit=1; while(limit<=m*2)limit<<=1; init(limit);
int g=getG(); // m的原根
for(int i=0;i<m-1;i++)id[fpow(g,i,m)]=i;
for(int i=1;i<=C;i++){
int x; scanf("%d",&x),x%=m;
if(x) f[id[x]]=1;
}
getans(f,n,ans);
printf("%d\n",ans[id[X]]);
return 0;
}

[题解] LuoguP3321 [SDOI2015]序列统计的更多相关文章

  1. 【题解】SDOI2015序列统计

    [题解]SDOI2015序列统计 来自永不AFO的YYB的推荐 这里是乘积,比较麻烦,不过由于给定的序列膜数是个小质数,所以可以\(O(m^2\log m)\)找原跟(实际上不需要这么多). 乘积有点 ...

  2. [BZOJ 3992][SDOI2015]序列统计

    3992: [SDOI2015]序列统计 Time Limit: 30 Sec  Memory Limit: 128 MBSubmit: 2275  Solved: 1090[Submit][Stat ...

  3. 【LG3321】[SDOI2015]序列统计

    [LG3321][SDOI2015]序列统计 题面 洛谷 题解 前置芝士:原根 我们先看一下对于一个数\(p\),它的原根\(g\)有什么性质(好像就是定义): \(g^0\%p,g^1\%p,g^2 ...

  4. 【BZOJ3992】[SDOI2015]序列统计 NTT+多项式快速幂

    [BZOJ3992][SDOI2015]序列统计 Description 小C有一个集合S,里面的元素都是小于M的非负整数.他用程序编写了一个数列生成器,可以生成一个长度为N的数列,数列中的每个数都属 ...

  5. BZOJ 3992: [SDOI2015]序列统计 快速幂+NTT(离散对数下)

    3992: [SDOI2015]序列统计 Description 小C有一个集合S,里面的元素都是小于M的非负整数.他用程序编写了一个数列生成器,可以生成一个长度为N的数列,数列中的每个数都属于集合S ...

  6. BZOJ 3992: [SDOI2015]序列统计 [快速数论变换 生成函数 离散对数]

    3992: [SDOI2015]序列统计 Time Limit: 30 Sec  Memory Limit: 128 MBSubmit: 1017  Solved: 466[Submit][Statu ...

  7. [SDOI2015]序列统计

    [SDOI2015]序列统计 标签: NTT 快速幂 Description 给你一个模m意义下的数集,需要用这个数集生成一个数列,使得这个数列在的乘积为x. 问方案数模\(1004535809\). ...

  8. 3992: [SDOI2015]序列统计

    3992: [SDOI2015]序列统计 链接 分析: 给定一个集和s,求多少个长度为n的序列,满足序列中每个数都属于s,并且所有数的乘积模m等于x. 设$f=\sum\limits_{i=0}^{n ...

  9. [BZOJ3992][SDOI2015]序列统计(DP+原根+NTT)

    3992: [SDOI2015]序列统计 Time Limit: 30 Sec  Memory Limit: 128 MBSubmit: 1888  Solved: 898[Submit][Statu ...

随机推荐

  1. pygame学习的第一天

    pygame最小开发框架: import pygame, sys pygame.init() screen = pygame.display.set_mode((600, 480)) pygame.d ...

  2. Duilib自定义控件

    新版博客已经搭建好了,有问题请访问 htt://www.crazydebug.com 在公司二期项目中为了将谷歌内核嵌入到duilib中,采用了自定义duilib控件的方法,由于也是第一次用duili ...

  3. 第2节 storm实时看板案例:9、实时看板综合案例

    =================================== 10.实时看板案例 10.1 项目需求梳理 根据订单mq,快速计算双11当天的订单量.销售金额.

  4. 在linux中安装redis

    1.安装gcc环境: yum install gcc-c++ 2.下载redis的源码包,把源码包上传到linux服务器 3.解压源码包 :  tar -zxvf redis-3.0.0.tar.gz ...

  5. 几种编辑器的markdown-toc生成目录在github上的表现

    Vscode vscode的markdown-toc插件的实现是比较好的, 目前发现的问题就只有在自动生成带链接目录的时候无法正确识别和生成一些特殊的字符. 例如: ▶ 这导致在标题中不能加入特殊字符 ...

  6. java实现在线预览 - -之poi实现word、excel、ppt转html

    简介 java实现在线预览功能是一个大家在工作中也许会遇到的需求,如果公司有钱,直接使用付费的第三方软件或者云在线预览服务就可以了,例如永中office.office web 365(http://w ...

  7. syx学习笔记

    SYX复活了,在悲痛之际,希望能让自己获得更多的知识,更有进步,所以留此博客 数学 推荐blog: 1 2 原根表 FFT(快速傅里叶变换) 2019/12/05 √ 博客 blog 题目 Q1 NT ...

  8. python-python基础3

    本章内容: 函数 递归 高阶函数 一.函数 一个函数一般完成一项特定的功能 函数使用     函数需要先定义     使用函数,调用

  9. sqli-labs level 2

    来到第第二关 首先在后面添加一个 单引号看下报错信息 发现这里多多了一个引号  尝试去掉单引号看下回显结果   :    and 1=2 可以发现这里不需要添加单引号进行闭合,可以直接控制,所以接下来 ...

  10. CentOS LVM 卷在线扩容

    场景: vmware 虚拟机,装了CentOS  ,更改了虚拟机磁盘的大小:从200G,扩展到320G,可以参考本文写了步骤. 1. 在线扫描虚拟机SCSI新增的容量 # for i in `find ...