Key word:

    ①最短路

    ②传递闭包:大小关系 数值关系 先后关系 联通关系

    ③floyd变形

    ④实现方式:插点发法

    ⑤思想:动态规划

1.最短路:

最短路是floyd的一个基本应用,但是对于不是裸题的最短路该怎么使用是我们要关注的,其次什么时候使用也是要注意的,至于什么时候使用Floyd,首先先看数据量,三重循环始终是Floyd不可避免的,所以200的点是极限,小于两百的时候,就要考虑,这个最短路如果考察Floyd那么他一定有坑,或者改变问的方式及在floyd过程中的处理操作,这里放到3,简单的有求一条最短路,最短路经过边需要花费,经过节点也需要花费,这时候就需要稍稍处理,复杂的也会有很多提问方式,要敏感,因为floyd的很多特性是其他最短路所没有的,多源最短路,关系的传递性这里放到2,例如给出最短路,在原图中删去一些边是使得给出最短路仍是最短路,因为Floyd动态规划的特性,他具有能够遍历所有的状态的特点,所有他能够找到任何边判断能否被松弛,这里是被替换。所以掌握好Floyd是做题的关键。

2.传递闭包:

这里是对关系的传递,这点用起来很舒服,比如汇率问题,求一种货币能经过若干次兑换变成更多的自己,这里的话我们考虑,dis[i][j]为i与j的汇率,那么松弛时则有dis[i][k]* dis[k][j]与dis[i][j]比较大小,这个时候Floyd传递的不再是数值关系,而是大小关系,这也算是最短路的变形,最大乘积路(?)。

3.Floyd 变形:

刚才也举了很多例子了,他们都是属于Floyd变形,至于为什么拿出来说是因为Floyd不可能考裸体(实在想考,那也没办法),考的都是变形题目,那么怎么变形很成问题,所以怎么变形,怎么去找题意是解决问题的关键,出题人的想法千奇百怪,你真的想不到他会怎么考你,所以做到所有的floyd是不现实的,即使floyd不难,但是我们还是通过题目找到了规律,所有的题目的考察都是根据2,4,5所改造的,那么理解4,5是解题关键。

4、5.这里一起说一下,动态规划思想在这里是最小化的枚举各种松弛情况,可以理解为区间DP相似的思想,也就是说关于I J之间的关系,可以通过floyd解决,在就是插点法,在两点外插入点以获得松弛操作,比如在一个图中,给你几条边让你添加到图中使得起点终点距离最小,这就是插点,插点更新距离即可。

这是我的总结,有不太对的地方,希望可以指出,共同进步。

图论--Floyd总结的更多相关文章

  1. [图论]Floyd 算法小结

    Floyd 算法小结  By Wine93 2013.11 1. Floyd算法简介 Floyd算法利用动态规划思想可以求出任意2点间的最短路径,时间复杂度为O(n^3),对于稠密图, 效率要高于执行 ...

  2. 图论·Floyd算法·HDU2544&1874 (伪)2066

    在看到1874的题时,第一反应是用上一篇的并查集方法,后来查了一下是要用Floyd做,所以就去查Floyd算法的资料. 即插点法,是一种用于寻找给定的加权图中顶点间最短路径的算法. 核心代码:  ma ...

  3. [笔记-图论]Floyd

    用于可带负权的多源最短路 时间复杂度O(n^3) 注意一定不要给Floyd一个带负环的图,不然就没有什么意义了(最短路不存在) 模板 // Floyd // to get minumum distan ...

  4. 图论——Floyd算法拓展及其动规本质

    一.Floyd算法本质 首先,关于Floyd算法: Floyd-Warshall算法是一种在具有正或负边缘权重(但没有负周期)的加权图中找到最短路径的算法.算法的单个执行将找到所有顶点对之间的最短路径 ...

  5. 【uva 10048】Audiophobia(图论--Floyd算法)

    题意:有一个N点M边的无向带权图,边权表示路径上的噪声值.有Q个询问,输出 x,y 两点间的最大噪声值最小的路径的该值.(N≤100,M≤1000,Q≤10000) 解法:N值小,且问多对点之间的路径 ...

  6. 【uva 247】Calling Circles(图论--Floyd 传递闭包+并查集 连通分量)

    题意:有N个人互相打了M次电话,请找出所有电话圈(Eg.a→b,b→c,c→d,d→a 就算一个电话圈)并输出.(N≤25,L≤25,注意输出格式) 解法:由于N比较小所有n^2或n^3的复杂度都没有 ...

  7. mathematical method

    mathematical method 曲线拟合 指数 \(lnY = lna + bX\) 对数 \(Y = blnX + a\) 幂函数 \(lgY=lga+blgX\) 多元线性回归模型 回归分 ...

  8. NOIp知识集合 By cellur925

    基本算法 快速幂 ll ksm(ll a,ll b) { ll ans=; while(b) { ) ans=ans*a%p; b>>=; a=a*a%p; } return ans; } ...

  9. CSP-S需备模板大全

    CSP-S需备模板大全 谨以此文祝愿自己\(CSP-S\,\,2019\,\,\color{red}{RP++!!}\) 算法 二分 while(l<r) { int mid=(l+r+1)&g ...

随机推荐

  1. 21.1 Math(数学运算)方法使用 、工具类

    package day21_static.meathDemo; //Math: 包含一些基本的数学运算方法 //从api中搜Math,它都用的static修饰. public class MethDe ...

  2. 用ASP.NET MVC5 +SQLSERVER2014搭建多层架构的数据库管理系统

    用http://ASP.NET MVC5 +SQLSERVER2014搭建多层架构的数据库管理系统 背景:前段时间,给一家公司做外包(就是图标是朵菊花那家).为了尽快实现交付,网上四处寻找适合中小型企 ...

  3. Python Requests-学习笔记(11)-请求与响应对象

    任何时候调用requests.*()你都在做两件主要的事情.其一,你在构建一个 Request 对象, 该对象将被发送到某个服务器请求或查询一些资源.其二,一旦 requests 得到一个从 服务器返 ...

  4. redis 正确实现分布式锁的正确方式

    前言 最近在自己所管理的项目中,发现redis加锁的方式不对,在高并发的情况有问题.故在网上找搜索了一把相关资料.发现好多都是互相抄袭的,很多都是有缺陷的.好多还在用redis 的 setnx命令来实 ...

  5. Jmeter连接mysql数据库?so easy!!!

    一.确保mysql数据库能够通过Navicat等远程连接工具连接. 注意:一定是确保能使用navicat连接,而不是dos窗口! 比如笔者需要查询ecshop数据库下的ecs_admin_user表, ...

  6. 文本文件的合并操作方法 - Python

    我们有时候,看到几k的日志文件,一大堆,一个一个打开又很麻烦,少看几个,又担心遗漏,这个时候,如果有一个可以合并所有文本文件的工具就好了. 下面这个代码就可以实现,它不局限于.txt格式,基本上字符型 ...

  7. api_DZFPKJ & api_DZFPCX

    AES加密算法的网站:http://www.ssleye.com/aes_cipher.html """ AES加密(加解密算法/工作模式/填充方式:AES/ECB/PK ...

  8. 爬虫需要登陆怎么办?这份python登陆代码请收下

    模拟登陆思路 通过selenium中的webdriver控制浏览器登录目标网站,然后获取模拟登陆需要的Cookie,再利用此Cookie来达到登录的效果.本次我们使用webdriver来驱动火狐浏览器 ...

  9. Laravel 分页 数据丢失问题解决

    问题: to do list 中有32条数据,每页10条,共3页. 做完了一个事项之后,准备打卡,发现找不到这个事项. 数据库查询正常,有这一条数据. 原因: 发现是分页出了问题,第1页的数据和第2页 ...

  10. vue2.x学习笔记(十六)

    接着前面的内容:https://www.cnblogs.com/yanggb/p/12616543.html. 组件中的插槽 在2.6.0的版本中,vue为具名插槽和作用域插槽引入了一个新的统一的语法 ...