Key word:

    ①最短路

    ②传递闭包:大小关系 数值关系 先后关系 联通关系

    ③floyd变形

    ④实现方式:插点发法

    ⑤思想:动态规划

1.最短路:

最短路是floyd的一个基本应用,但是对于不是裸题的最短路该怎么使用是我们要关注的,其次什么时候使用也是要注意的,至于什么时候使用Floyd,首先先看数据量,三重循环始终是Floyd不可避免的,所以200的点是极限,小于两百的时候,就要考虑,这个最短路如果考察Floyd那么他一定有坑,或者改变问的方式及在floyd过程中的处理操作,这里放到3,简单的有求一条最短路,最短路经过边需要花费,经过节点也需要花费,这时候就需要稍稍处理,复杂的也会有很多提问方式,要敏感,因为floyd的很多特性是其他最短路所没有的,多源最短路,关系的传递性这里放到2,例如给出最短路,在原图中删去一些边是使得给出最短路仍是最短路,因为Floyd动态规划的特性,他具有能够遍历所有的状态的特点,所有他能够找到任何边判断能否被松弛,这里是被替换。所以掌握好Floyd是做题的关键。

2.传递闭包:

这里是对关系的传递,这点用起来很舒服,比如汇率问题,求一种货币能经过若干次兑换变成更多的自己,这里的话我们考虑,dis[i][j]为i与j的汇率,那么松弛时则有dis[i][k]* dis[k][j]与dis[i][j]比较大小,这个时候Floyd传递的不再是数值关系,而是大小关系,这也算是最短路的变形,最大乘积路(?)。

3.Floyd 变形:

刚才也举了很多例子了,他们都是属于Floyd变形,至于为什么拿出来说是因为Floyd不可能考裸体(实在想考,那也没办法),考的都是变形题目,那么怎么变形很成问题,所以怎么变形,怎么去找题意是解决问题的关键,出题人的想法千奇百怪,你真的想不到他会怎么考你,所以做到所有的floyd是不现实的,即使floyd不难,但是我们还是通过题目找到了规律,所有的题目的考察都是根据2,4,5所改造的,那么理解4,5是解题关键。

4、5.这里一起说一下,动态规划思想在这里是最小化的枚举各种松弛情况,可以理解为区间DP相似的思想,也就是说关于I J之间的关系,可以通过floyd解决,在就是插点法,在两点外插入点以获得松弛操作,比如在一个图中,给你几条边让你添加到图中使得起点终点距离最小,这就是插点,插点更新距离即可。

这是我的总结,有不太对的地方,希望可以指出,共同进步。

图论--Floyd总结的更多相关文章

  1. [图论]Floyd 算法小结

    Floyd 算法小结  By Wine93 2013.11 1. Floyd算法简介 Floyd算法利用动态规划思想可以求出任意2点间的最短路径,时间复杂度为O(n^3),对于稠密图, 效率要高于执行 ...

  2. 图论·Floyd算法·HDU2544&1874 (伪)2066

    在看到1874的题时,第一反应是用上一篇的并查集方法,后来查了一下是要用Floyd做,所以就去查Floyd算法的资料. 即插点法,是一种用于寻找给定的加权图中顶点间最短路径的算法. 核心代码:  ma ...

  3. [笔记-图论]Floyd

    用于可带负权的多源最短路 时间复杂度O(n^3) 注意一定不要给Floyd一个带负环的图,不然就没有什么意义了(最短路不存在) 模板 // Floyd // to get minumum distan ...

  4. 图论——Floyd算法拓展及其动规本质

    一.Floyd算法本质 首先,关于Floyd算法: Floyd-Warshall算法是一种在具有正或负边缘权重(但没有负周期)的加权图中找到最短路径的算法.算法的单个执行将找到所有顶点对之间的最短路径 ...

  5. 【uva 10048】Audiophobia(图论--Floyd算法)

    题意:有一个N点M边的无向带权图,边权表示路径上的噪声值.有Q个询问,输出 x,y 两点间的最大噪声值最小的路径的该值.(N≤100,M≤1000,Q≤10000) 解法:N值小,且问多对点之间的路径 ...

  6. 【uva 247】Calling Circles(图论--Floyd 传递闭包+并查集 连通分量)

    题意:有N个人互相打了M次电话,请找出所有电话圈(Eg.a→b,b→c,c→d,d→a 就算一个电话圈)并输出.(N≤25,L≤25,注意输出格式) 解法:由于N比较小所有n^2或n^3的复杂度都没有 ...

  7. mathematical method

    mathematical method 曲线拟合 指数 \(lnY = lna + bX\) 对数 \(Y = blnX + a\) 幂函数 \(lgY=lga+blgX\) 多元线性回归模型 回归分 ...

  8. NOIp知识集合 By cellur925

    基本算法 快速幂 ll ksm(ll a,ll b) { ll ans=; while(b) { ) ans=ans*a%p; b>>=; a=a*a%p; } return ans; } ...

  9. CSP-S需备模板大全

    CSP-S需备模板大全 谨以此文祝愿自己\(CSP-S\,\,2019\,\,\color{red}{RP++!!}\) 算法 二分 while(l<r) { int mid=(l+r+1)&g ...

随机推荐

  1. Dubbo 路由机制的实现

    Dubbo 路由机制是在服务间的调用时,通过将服务提供者按照设定的路由规则来决定调用哪一个具体的服务. 路由服务结构 Dubbo 实现路由都是通过实现 RouterFactory 接口.当前版本 du ...

  2. 33.1 File 获取目录下的所有文件及子目录

    重要获取功能 String[] list() 返回当前路径下所有的文件和文件夹名称 //注意:只有指向文件夹的File对象才可以调用该方法(指向文件的file对象使用list会报错npe) File[ ...

  3. 让 .NET 轻松构建中间件模式代码(二)

    让 .NET 轻松构建中间件模式代码(二)--- 支持管道的中断和分支 Intro 上次实现了一个基本的构建中间件模式的中间件构建器,现在来丰富一下功能,让它支持中断和分支,分别对应 asp.net ...

  4. spark模型error java.lang.IllegalArgumentException: Row length is 0

    failure: Lost task 18.3 in stage 17.0 (TID 59784,XXXXX, executor 19): java.lang.IllegalArgumentExcep ...

  5. Python——flask漏洞探究

    python的用途是真的多,就连网站也能做,这个有点像Java的Servlet flask基础 hello world 我们先从基础的开始,在网页上打出hello world,python代码如下: ...

  6. cxGrid增加一栏显示checkBox的设置方法

    鉴于本人首次设定cxGrid的CheckBox的时候费了很大劲,发现很多人都会碰到这个问题,现在总结一下,以供各位互相学习借鉴. 步骤如下(不分先后): 1. cxGrid添加完自己所需的所有字段后, ...

  7. V - Infinite Prefixes CodeForces - 1295B math

    天哪!!菜到家啦. 数学+思维. 首先求出一个周期内cnt0-cnt1=c的个数,如果C=0,那么只要在一个周期内有前缀等于x,那么答案就是-1,否则答案就是0 如果C!=0,列一下方程x=t*c+a ...

  8. C - Dr. Evil Underscores CodeForces - 1285D 二进制

    题目大意:n个数,任意整数x对这n个数取异或值,然后使最大值最小. 思路:数据范围最大为pow(2,30);所以考虑二进制的话,最多有30位.对于某一位d,然后考虑数组v中每一个元素的d为是0还是1, ...

  9. reactnavigation 5.x简单例子

    随着RN和reactnavigation的版本更新,网上很多老版的例子都不能用了. 自己摸索着跑通了一些简单的功能. 使用的是最新的    "react-native": &quo ...

  10. C#栈、堆的理解(2)

    接上一遍博文有关值类型和引用类型的相关概念. 所有值类型数据存放:栈(内存) 引用类型的数据存放:堆(内存) 栈:可以认为是一本书的目录部分称其为栈.栈可快速检索,运行速度比堆大,而且栈的空间小得多. ...