转自:https://www.cnblogs.com/coffy/p/5878915.html

设f(i)表示L中以ai为末元素的最长递增子序列的长度。则有如下的递推方程:

这个递推方程的意思是,在求以ai为末元素的最长递增子序列时,找到所有序号在L前面且小于ai的元素aj,即j<i且aj<ai。如果这样的元素存在,那么对所有aj,都有一个以aj为末元素的最长递增子序列,设其长度为f(j),把其中最大的f(j)选出来,那么f(i)就等于最大的f(j)加上1,即以ai为末元素的最长递增子序列,等于以使f(j)最大的那个aj为末元素的递增子序列,再加上ai;如果这样的元素不存在,那么ai自身构成一个长度为1的以ai为末元素的递增子序列。

public void lis(float[] L)
{
int n = L.length;
int[] f = new int[n];//用于存放f(i)值;
f[0]=1;//以第a1为末元素的最长递增子序列长度为1;
for(int i = 1;i<n;i++)//循环n-1次
{
f[i]=1;//f[i]的最小值为1;
for(int j=0;j<i;j++)//循环i 次
{
if(L[j]<L[i]&&f[j]+1>f[i])//f[j]+1>f[i]意思是以j结尾的递增序列加上元素i之后,整个递增序列变得更长了
f[i]=f[j]+1;//更新f[i]的值。//
}
}
//f[i]的值是以L[i]为结尾的递增子序列的长度,需要求LIS,所以要取其中的最大值。
return max(f);
}

【转】动态规划:最长递增子序列Longest Increasing Subsequence的更多相关文章

  1. 最长递增子序列(Longest increasing subsequence)

    问题定义: 给定一个长度为N的数组A,找出一个最长的单调递增子序列(不要求连续). 这道题共3种解法. 1. 动态规划 动态规划的核心是状态的定义和状态转移方程.定义lis(i),表示前i个数中以A[ ...

  2. nlog(n)解动态规划--最长上升子序列(Longest increasing subsequence)

    最长上升子序列LIS问题属于动态规划的初级问题,用纯动态规划的方法来求解的时间复杂度是O(n^2).但是如果加上二叉搜索的方法,那么时间复杂度可以降到nlog(n).  具体分析参考:http://b ...

  3. 动态规划--最长上升子序列(Longest increasing subsequence)

    前面写了最长公共子序列的问题.然后再加上自身对动态规划的理解,真到简单的DP问题很快就解决了.其实只要理解了动态规划的本质,那么再有针对性的去做这方的题目,思路很快就会有了.不错不错~加油 题目描述: ...

  4. 算法实践--最长递增子序列(Longest Increasing Subsquence)

    什么是最长递增子序列(Longest Increasing Subsquence) 对于一个序列{3, 2, 6, 4, 5, 1},它包含很多递增子序列{3, 6}, {2,6}, {2, 4, 5 ...

  5. 300最长上升子序列 · Longest Increasing Subsequence

    [抄题]: 往上走台阶 最长上升子序列问题是在一个无序的给定序列中找到一个尽可能长的由低到高排列的子序列,这种子序列不一定是连续的或者唯一的. 样例 给出 [5,4,1,2,3],LIS 是 [1,2 ...

  6. [Swift]LeetCode300. 最长上升子序列 | Longest Increasing Subsequence

    Given an unsorted array of integers, find the length of longest increasing subsequence. Example: Inp ...

  7. 最长递增子序列(Longest Increase Subsequence)

    问题 给定一个长度为N的数组,找出一个最长的单调自增子序列(不一定连续,但是顺序不能乱).例如:给定一个长度为6的数组A{5, 6, 7, 1, 2, 8},则其最长的单调递增子序列为{5,6,7,8 ...

  8. 动态规划 - 最长递增子序列(LIS)

    最长递增子序列是动态规划中经典的问题,详细如下: 在一个已知的序列{a1,a2,...,an}中,取出若干数组组成新的序列{ai1,ai2,...,aim},其中下标i1,i2,...,im保持递增, ...

  9. 动态规划----最长递增子序列问题(LIS)

    题目: 输出最长递增子序列的长度,如输入 4 2 3 1 5 6,输出 4 (因为 2 3 5 6组成了最长递增子序列). 暴力破解法:这种方法很简单,两层for循环搞定,时间复杂度是O(N2). 动 ...

随机推荐

  1. 「译」Graal JIT编译器是如何工作的

    原文Understanding How Graal Works - a Java JIT Compiler Written in Java,讲了jvmci和ideal graph的基本概念以及一些优化 ...

  2. 使用docker搭建自己的博客(一)

    购买服务器 首先服务器选择腾讯云学生服务器,25岁以下实名认证后月租10块,还是很适合我这种简约派的 又财大气粗买了个一年的域名,后面涨价再说吧 安装docker 使用xshell连上服务器 安装必要 ...

  3. PHP命令执行学习总结

    前言 最近学习了PHP命令执行,内容比较多,把自己学到的总结下来,加深理解,水平有限,欢迎大佬斧正. 什么是PHP命令注入攻击? Command Injection,即命令注入攻击,是指由于Web应用 ...

  4. POJ 2777——线段树Lazy的重要性

    POJ 2777 Count Color --线段树Lazy的重要性 原题 链接:http://poj.org/problem?id=2777 Count Color Time Limit: 1000 ...

  5. zabbix日常问题总结

    1.connection to database 'zabbix' failed: [1040] Too many connections 问题:数据库连接池太少解决:增加数据库连接池步骤:(1).进 ...

  6. sequel pro无法连接mysql服务器

    1. 添加用户 GRANT ALL PRIVILEGES ON *.* TO 'root'@'%' IDENTIFIED BY 'your_passwd' WITH GRANT OPTION; FLU ...

  7. C. Game with Chips(陷阱暴力题)

    \(为什么说这是个陷阱呢??\) \(因为不管你脑洞多大,数学多好,都发现会束手无策\) \(每移动一次不知道往哪个方向,不知道先访问哪个点,同时要记录所有点的坐标,记录每个点是否访问过目标点.... ...

  8. Tunnel Warfare 线段树 区间合并|最大最小值

    B - Tunnel WarfareHDU - 1540 这个有两种方法,一个是区间和并,这个我个人感觉异常恶心 第二种方法就是找最大最小值 kuangbin——线段树专题 H - Tunnel Wa ...

  9. [hdu5402 Travelling Salesman Problem]YY

    题意:给一个n*m的矩形,每个格子有一个非负数,求一条从(1,1)到(n,m)的路径(不能经过重复的格子),使得经过的数的和最大,输出具体的方案 思路:对于row为奇数的情况,一行行扫下来即可全部走完 ...

  10. springmvc 校验---spring校验

    springmvc提供了灵活的可拓展的校验方式,根据不同的项目可选择适合的校验方式,首先介绍下springmvc中内置的校验实现方式! 1.实现 org.springframework.validat ...