Water Testing

传送门:链接  来源:UPC 9656

题目描述

You just bought a large piece of agricultural land, but you noticed that – according to regulations – you have to test the ground water at specific points on your property once a year. Luckily the description of these points is rather simple. The whole country has been mapped using a Cartesian Coordinate System (where (0, 0) is the location of the Greenwich Observatory). The corners of all land properties are located at integer coordinates according to this coordinate system. Test points for ground water have to be erected on every point inside a property whose coordinates are integers.

输入

The input consists of:

• one line with a single integer n (3 ≤ n ≤ 100 000), the number of corner points of your property;

• n lines each containing two integers x and y (−106 ≤ x, y ≤ 106 ), the coordinates of each corner.

The corners are ordered as they appear on the border of your property and the polygon described by the points does not intersect itself.

输出

The number of points with integer coordinates that are strictly inside your property.

样例输入

4
0 0
0 10
10 10
10 0

样例输出

81

题目大意:

给出一个多边形每个顶点的坐标,求在该图形内部方格点的个数。

解题思路:

`1、皮克定理:2S=b+2a-2   (其中S表示多边形的面积,b表示多边形上点的个数,a表示多边形内部点的个数。)

2、已知顶点坐标求多边形面积公式:S=0.5*abs(x1*y2-y1*x2+x2*y3-y2*x3+...+xn*y1-yn*x1)

3、已知方向向量为(x,y)求在线段上点的个数:b=gcd(fabs(x),fabs(y))

如果(x1,y1)只是一个顶点而不是向量,就要先求出边的向量才能用公式3!!!

根据上面三个公式可以求出: b=S-1+0.5*a

qi shi shu lun bu gui wo guan !

AC代码:

#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
const LL MAX=1e5;
struct point{
double x;
double y;
}p[MAX+5];
LL gcd(LL a,LL b)
{
if(b==0) return a;
return gcd(b,a%b);
}
int main()
{
LL n;
cin>>n;
double s=0,b=0;
for(LL i=0;i<n;i++){
cin>>p[i].x>>p[i].y;
if(i!=0){
b+=gcd(fabs(p[i].x-p[i-1].x),fabs(p[i].y-p[i-1].y));
s+=(p[i].y*p[i-1].x-p[i].x*p[i-1].y);
}
}
s+=(p[0].y*p[n-1].x-p[0].x*p[n-1].y);
b+=gcd(fabs(p[0].x-p[n-1].x),fabs(p[0].y-p[n-1].y));
s=0.5*fabs(s);
cout<<(LL)(s+1-b*0.5)<<endl;
return 0;
}

Water Testing【皮克定理,多边形面积,线段上点的数目】的更多相关文章

  1. Gym 101873G - Water Testing - [皮克定理]

    题目链接:http://codeforces.com/gym/101873/problem/G 题意: 在点阵上,给出 $N$ 个点的坐标(全部都是在格点上),将它们按顺序连接可以构成一个多边形,求该 ...

  2. Codeforces-GYM101873 G Water Testing 皮克定理

    题意: 给定一个多边形,这个多边形的点都在格点上,问你这个多边形里面包含了几个格点. 题解: 对于格点多边形有一个非常有趣的定理: 多边形的面积S,内部的格点数a和边界上的格点数b,满足如下结论: 2 ...

  3. POJ 1265 /// 皮克定理+多边形边上整点数+多边形面积

    题目大意: 默认从零点开始 给定n次x y上的移动距离 组成一个n边形(可能为凹多边形) 输出其 内部整点数 边上整点数 面积 皮克定理 多边形面积s = 其内部整点in + 其边上整点li / 2 ...

  4. Area---poj1265(皮克定理+多边形求面积)

    题目链接:http://poj.org/problem?id=1265 题意是:有一个机器人在矩形网格中行走,起始点是(0,0),每次移动(dx,dy)的偏移量,已知,机器人走的图形是一个多边形,求这 ...

  5. POJ 1265 Area (Pick定理 & 多边形面积)

    题目链接:POJ 1265 Problem Description Being well known for its highly innovative products, Merck would d ...

  6. POJ1265——Area(Pick定理+多边形面积)

    Area DescriptionBeing well known for its highly innovative products, Merck would definitely be a goo ...

  7. POJ 2954 /// 皮克定理+叉积求三角形面积

    题目大意: 给定三角形的三点坐标 判断在其内部包含多少个整点 题解及讲解 皮克定理 多边形面积s = 其内部整点in + 其边上整点li / 2 - 1 那么求内部整点就是 in = s + 1 - ...

  8. 洛谷 P2735 电网 Electric Fences Label:计算几何--皮克定理

    题目描述 在本题中,格点是指横纵坐标皆为整数的点. 为了圈养他的牛,农夫约翰(Farmer John)建造了一个三角形的电网.他从原点(0,0)牵出一根通电的电线,连接格点(n,m)(0<=n& ...

  9. poj1265&&2954 [皮克定理 格点多边形]【学习笔记】

    Q:皮克定理这种一句话的东西为什么还要写学习笔记啊? A:多好玩啊... PS:除了蓝色字体之外都是废话啊...  Part I 1.顶点全在格点上的多边形叫做格点多边形(坐标全是整数) 2.维基百科 ...

随机推荐

  1. CF894B Ralph And His Magic Field

    题目链接:http://codeforces.com/contest/894/problem/B 题目大意: 往一个 \(n \times m\) 的网格中填数字 \((1 \le n,m \le 1 ...

  2. Android常用五大布局

    一.说明 1.每个应用程序都默认包含一个主界面布局文件(.xml). 2.位于项目的app/src/main/res/layout目录. 3.宽度和高度的属性 match_parent:强制性的使使徒 ...

  3. elasticsearch7.X x-pack破解

    简介: x-pack是elasticsearch的一个收费的扩展包,将权限管理,警告,监视等功能捆绑在一个易于安装的软件包中,x-pack被设计为一个无缝的工作,但是你可以轻松的启用或者关闭一些功能. ...

  4. net core获取appsetting.json的另外一种思路(全局,实时变化无需重启项目)

    最近在写net core的项目,在非controller和service里面需要用到appsetting.json文件里面的一些配置,查资料大概有几种思路: 注入,然后config.GetSectio ...

  5. 【MobileNet-V1】-2017-CVPR-MobileNets Efficient Convolutional Neural Networks for Mobile Vision Applications-论文阅读

    2017-CVPR-MobileNets Efficient Convolutional Neural Networks for Mobile Vision Applications Andrew H ...

  6. 收藏!如何有效实施devops?

    当今IT行业的竞争日益激烈,各家公司都在寻找优化软件研发过程的方法,因为交付比对手更具竞争力的产品已经越发成为一件成本高昂的事情.这也是DevOps发挥作用的地方,因为它可以在工程管理的各个方面提供帮 ...

  7. 【HIVE】hive的安装与使用教程

    hive是基于Hadoop的一个数据仓库工具,可以将结构化的数据文件映射为一张数据库表,并提供简单的sql查询功能,可以将sql语句转换为MapReduce任务进行运行. 其优点是学习成本低,可以通过 ...

  8. Java并发编程 (七) J.U.C之AQS

    个人博客网:https://wushaopei.github.io/    (你想要这里多有) 一. J.U.C之AQS-介绍 1.定义: AbstractQueuedSynchronizer简称AQ ...

  9. Java实现 LeetCode 744 寻找比目标字母大的最小字母(二分法)

    744. 寻找比目标字母大的最小字母 给定一个只包含小写字母的有序数组letters 和一个目标字母 target,寻找有序数组里面比目标字母大的最小字母. 在比较时,数组里字母的是循环有序的.举个例 ...

  10. Java实现 LeetCode 674 最长连续递增序列(暴力)

    674. 最长连续递增序列 给定一个未经排序的整数数组,找到最长且连续的的递增序列. 示例 1: 输入: [1,3,5,4,7] 输出: 3 解释: 最长连续递增序列是 [1,3,5], 长度为3. ...