SK-learn实现k近邻算法【准确率随k值的变化】-------莺尾花种类预测
代码详解:
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.neighbors import KNeighborsClassifier
import matplotlib.pyplot as plt
from pylab import mpl # 设置显示中文字体
mpl.rcParams["font.sans-serif"] = ["SimHei"]
# 设置正常显示符号
mpl.rcParams["axes.unicode_minus"] = False
#读取数据
iris = load_iris() #分出训练集和测试集
x_train,x_test,y_train,y_test = train_test_split(iris.data,iris.target,test_size=0.3,random_state=22) #数据标准化,防止异常点的影响
transfer = StandardScaler()
x_train = transfer.fit_transform(x_train)
x_test = transfer.transform(x_test) #创建画布
plt.figure()
plt.title("准确率随k值的变化")
#打开交互
plt.ion()
#网格
plt.grid()
#x轴和y轴标注
plt.ylabel("准确率")
plt.xlabel("k值") #循环k的取值从1到50
for k in range(1,50):
# plt.cla()
#定义一个k分类算法对象
estimator = KNeighborsClassifier(n_neighbors=k)
#训练
estimator.fit(x_train,y_train) #用测试集测试准确率
y_predict = estimator.predict(x_test)
score = estimator.score(x_test, y_test)
#画散点图
plt.scatter(k,score)
plt.pause(0.1) print("预测结果为:",y_predict)
print("对比真实值和预测值:",y_test)
print("准确率:",score) #关闭交互模式,并最后显示图像
plt.ioff()
plt.show()
SK-learn实现k近邻算法【准确率随k值的变化】-------莺尾花种类预测的更多相关文章
- 1.K近邻算法
(一)K近邻算法基础 K近邻(KNN)算法优点 思想极度简单 应用数学知识少(近乎为0) 效果好 可以解释机器学习算法使用过程中的很多细节问题 更完整的刻画机器学习应用的流程 图解K近邻算法 上图是以 ...
- Python3入门机器学习 - k近邻算法
邻近算法,或者说K最近邻(kNN,k-NearestNeighbor)分类算法是数据挖掘分类技术中最简单的方法之一.所谓K最近邻,就是k个最近的邻居的意思,说的是每个样本都可以用它最接近的k个邻居来代 ...
- 02-16 k近邻算法
目录 k近邻算法 一.k近邻算法学习目标 二.k近邻算法引入 三.k近邻算法详解 3.1 k近邻算法三要素 3.1.1 k值的选择 3.1.2 最近邻算法 3.1.3 距离度量的方式 3.1.4 分类 ...
- k近邻算法(KNN)
k近邻算法(KNN) 定义:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别. from sklearn.model_selection ...
- R语言学习笔记—K近邻算法
K近邻算法(KNN)是指一个样本如果在特征空间中的K个最相邻的样本中的大多数属于某一个类别,则该样本也属于这个类别,并具有这个类别上样本的特性.即每个样本都可以用它最接近的k个邻居来代表.KNN算法适 ...
- 机器学习(四) 分类算法--K近邻算法 KNN (上)
一.K近邻算法基础 KNN------- K近邻算法--------K-Nearest Neighbors 思想极度简单 应用数学知识少 (近乎为零) 效果好(缺点?) 可以解释机器学习算法使用过程中 ...
- 机器学习(1)——K近邻算法
KNN的函数写法 import numpy as np from math import sqrt from collections import Counter def KNN_classify(k ...
- python 机器学习(二)分类算法-k近邻算法
一.什么是K近邻算法? 定义: 如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别. 来源: KNN算法最早是由Cover和Hart提 ...
- GridSearchCV网格搜索得到最佳超参数, 在K近邻算法中的应用
最近在学习机器学习中的K近邻算法, KNeighborsClassifier 看似简单实则里面有很多的参数配置, 这些参数直接影响到预测的准确率. 很自然的问题就是如何找到最优参数配置? 这就需要用到 ...
随机推荐
- List<Object>转List<T>
今天遇到一个麻烦,公司有个项目用了一个封装dao的模板,他妈的不管是查一条数据的方法,还是查一个集合数据的方法,全都返回Object或List<Object> 由于对象是Object根本不 ...
- nginx使用手册+基本原理+优缺点
一.nginx优点 1.反向代理 1.正向代理: 客户端和原始服务器(origin server)之间的服务器,为了从原始服务器取得内容,客户端向代理发送一个请求并指定目标(原始服务器),然后代理向原 ...
- 编译原理:LL(1)文法的判断,递归下降分析程序
1. 文法 G(S): (1)S -> AB (2)A ->Da|ε (3)B -> cC (4)C -> aADC |ε (5)D -> b|ε 验证文法 G(S)是不 ...
- MyBatis整合Spring原理分析
目录 MyBatis整合Spring原理分析 MapperScan的秘密 简单总结 假如不结合Spring框架,我们使用MyBatis时的一个典型使用方式如下: public class UserDa ...
- Git版本控制 Git、github,gitlab相关操作
目录 关于版本控制 版本管理工具 集中式管理 分布式管理 git版本管理 git介绍 软件安装 Git工作状态 原理流程步骤 git基本操作 对文件进行修改 分支 共享仓库 创建共享仓库: 共享仓库上 ...
- day 1 硬件组成概念及介绍笔记
一.服务器的种类: 硬件服务器: 1.机架式服务器 2.刀片式服务器 3.塔式服务器 虚拟服务器: 阿里云 aws 腾讯云 二.详细硬件组成: 1.电源 ----心脏(供电) 冗余特性 ups ...
- PTA数据结构与算法题目集(中文) 7-4
PTA数据结构与算法题目集(中文) 7-4 是否同一颗二叉搜索树 给定一个插入序列就可以唯一确定一棵二叉搜索树.然而,一棵给定的二叉搜索树却可以由多种不同的插入序列得到.例如分别按照序列{2, 1, ...
- Python Count函数的应用
Python Count函数的应用 通过LeetCode Origin:https://leetcode-cn.com/problems/robot-return-to-origin/ 学会了Pyth ...
- centos 64位安装jpeg-6b
先安装libtool和libtool-ltdl-devel 用find命令查找config.sub和config.guess文件 find / -name config.sub find / -nam ...
- 【php】LAMP中开启错误提示
vi /usr/local/php/etc/php.ini 查找display_errors 开启On即可