代码详解:

from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.neighbors import KNeighborsClassifier
import matplotlib.pyplot as plt
from pylab import mpl # 设置显示中文字体
mpl.rcParams["font.sans-serif"] = ["SimHei"]
# 设置正常显示符号
mpl.rcParams["axes.unicode_minus"] = False
#读取数据
iris = load_iris() #分出训练集和测试集
x_train,x_test,y_train,y_test = train_test_split(iris.data,iris.target,test_size=0.3,random_state=22) #数据标准化,防止异常点的影响
transfer = StandardScaler()
x_train = transfer.fit_transform(x_train)
x_test = transfer.transform(x_test) #创建画布
plt.figure()
plt.title("准确率随k值的变化")
#打开交互
plt.ion()
#网格
plt.grid()
#x轴和y轴标注
plt.ylabel("准确率")
plt.xlabel("k值") #循环k的取值从1到50
for k in range(1,50):
# plt.cla()
#定义一个k分类算法对象
estimator = KNeighborsClassifier(n_neighbors=k)
#训练
estimator.fit(x_train,y_train) #用测试集测试准确率
y_predict = estimator.predict(x_test)
score = estimator.score(x_test, y_test)
#画散点图
plt.scatter(k,score)
plt.pause(0.1) print("预测结果为:",y_predict)
print("对比真实值和预测值:",y_test)
print("准确率:",score) #关闭交互模式,并最后显示图像
plt.ioff()
plt.show()

  

SK-learn实现k近邻算法【准确率随k值的变化】-------莺尾花种类预测的更多相关文章

  1. 1.K近邻算法

    (一)K近邻算法基础 K近邻(KNN)算法优点 思想极度简单 应用数学知识少(近乎为0) 效果好 可以解释机器学习算法使用过程中的很多细节问题 更完整的刻画机器学习应用的流程 图解K近邻算法 上图是以 ...

  2. Python3入门机器学习 - k近邻算法

    邻近算法,或者说K最近邻(kNN,k-NearestNeighbor)分类算法是数据挖掘分类技术中最简单的方法之一.所谓K最近邻,就是k个最近的邻居的意思,说的是每个样本都可以用它最接近的k个邻居来代 ...

  3. 02-16 k近邻算法

    目录 k近邻算法 一.k近邻算法学习目标 二.k近邻算法引入 三.k近邻算法详解 3.1 k近邻算法三要素 3.1.1 k值的选择 3.1.2 最近邻算法 3.1.3 距离度量的方式 3.1.4 分类 ...

  4. k近邻算法(KNN)

    k近邻算法(KNN) 定义:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别. from sklearn.model_selection ...

  5. R语言学习笔记—K近邻算法

    K近邻算法(KNN)是指一个样本如果在特征空间中的K个最相邻的样本中的大多数属于某一个类别,则该样本也属于这个类别,并具有这个类别上样本的特性.即每个样本都可以用它最接近的k个邻居来代表.KNN算法适 ...

  6. 机器学习(四) 分类算法--K近邻算法 KNN (上)

    一.K近邻算法基础 KNN------- K近邻算法--------K-Nearest Neighbors 思想极度简单 应用数学知识少 (近乎为零) 效果好(缺点?) 可以解释机器学习算法使用过程中 ...

  7. 机器学习(1)——K近邻算法

    KNN的函数写法 import numpy as np from math import sqrt from collections import Counter def KNN_classify(k ...

  8. python 机器学习(二)分类算法-k近邻算法

      一.什么是K近邻算法? 定义: 如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别. 来源: KNN算法最早是由Cover和Hart提 ...

  9. GridSearchCV网格搜索得到最佳超参数, 在K近邻算法中的应用

    最近在学习机器学习中的K近邻算法, KNeighborsClassifier 看似简单实则里面有很多的参数配置, 这些参数直接影响到预测的准确率. 很自然的问题就是如何找到最优参数配置? 这就需要用到 ...

随机推荐

  1. ClickHouse学习系列之一【安装说明】

    背景 最近花了些时间看了下ClickHouse文档,发现它在OLAP方面表现很优异,而且相对也比较轻量和简单,所以准备入门了解下该数据库系统.按照习惯第一步先安装,本文对其用户权限管理方面进行梳理说明 ...

  2. Spring Framework之IoC容器

    Spring IoC 概述 问题 1.什么是依赖倒置? 2.什么是控制反转? 3.什么是依赖注入? 4.它们之间的关系是怎样的? 5.优点有哪些? 依赖倒置原则 (Dependency Inversi ...

  3. [bzoj2547]玩具兵<Spfa+二分+匈牙利算法>

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2547 挺有意思的一道题,这道题可以划分成几个小题....... 题目大意: 三个兵种在一个 ...

  4. JavaScript/JQuery对图片放大或缩小失效

    将图片的父元素的宽度和高度也设置后,问题解决.Got it!

  5. .net core 集成 sentry 进行异常报警

    .net core 集成 sentry 进行异常报警 Intro Sentry 是一个实时事件日志记录和汇集的平台.其专注于错误监控以及提取一切事后处理所需信息而不依赖于麻烦的用户反馈.它分为客户端和 ...

  6. 构建Mysql服务器

    <综合>构建Mysql服务器 构建MySQL服务器 数据库基本管理 MySQL 数据类型 表结构的调整 1 构建MySQL服务器 1.1 问题 本案例要求熟悉MySQL官方安装包的使用,快 ...

  7. RedHat7.4配置yum网络源

    本次RedHat版本为:Red Hat Enterprise Linux Server release 7.4 (Maipo). 将RedHat7.4的yum源替换为免费的CentOS对应版本yum源 ...

  8. Spring Boot入门系列(十)如何使用拦截器,一学就会!

    前面介绍了Spring Boot 如何整合定时任务已经Spring Boot 如何创建异步任务,不清楚的朋友可以看看之前的文章:https://www.cnblogs.com/zhangweizhon ...

  9. Pyspider的基本使用

    Pyspider的基本使用 pyspider的任务流程: 每个pyspider的项目对应一个Python的脚本,该脚本中定义了一个Handler类,它有一个on_start方法.爬取首先调用on_st ...

  10. python3的subprocess的各个方法的区别(二)

    subprocess如何避免死锁 如果交互是双工的,即涉及读取和写入,则尤其如此.这种交互可能导致死锁,因为两个进程都可能最终等待另一个进程的输出 您希望从子进程标准输出管道读取,但标准错误管道的缓冲 ...