单向LSTM

import torch.nn as nn
import torch seq_len = 20
batch_size = 64
embedding_dim = 100
num_embeddings = 300
hidden_size = 128
number_layer = 3 input = torch.randint(low=0,high=256,size=[batch_size,seq_len]) #[64,20] embedding = nn.Embedding(num_embeddings,embedding_dim) input_embeded = embedding(input) #[64,20,100] #转置,变换batch_size 和seq_len
# input_embeded = input_embeded.transpose(0,1)
# input_embeded = input_embeded.permute(1,0,2)
#实例化lstm lstm = nn.LSTM(input_size=embedding_dim,hidden_size=hidden_size,batch_first=True,num_layers=number_layer) output,(h_n,c_n) = lstm(input_embeded)
print(output.size()) #[64,20,128] [batch_size,seq_len,hidden_size]
print(h_n.size()) #[3,64,128] [number_layer,batch_size,hidden_size]
print(c_n.size()) #同上 #获取最后时间步的output
output_last = output[:,-1,:]
#获取最后一层的h_n
h_n_last = h_n[-1] print(output_last.size())
print(h_n_last.size())
#最后的output等于最后一层的h_n
print(output_last.eq(h_n_last))

D:\anaconda\python.exe C:/Users/liuxinyu/Desktop/pytorch_test/day4/LSTM练习.py
torch.Size([64, 20, 128])
torch.Size([3, 64, 128])
torch.Size([3, 64, 128])
torch.Size([64, 128])
torch.Size([64, 128])
tensor([[True, True, True, ..., True, True, True],
[True, True, True, ..., True, True, True],
[True, True, True, ..., True, True, True],
...,
[True, True, True, ..., True, True, True],
[True, True, True, ..., True, True, True],
[True, True, True, ..., True, True, True]])

Process finished with exit code 0

  双向LSTM

import torch.nn as nn
import torch seq_len = 20
batch_size = 64
embedding_dim = 100
num_embeddings = 300
hidden_size = 128
number_layer = 3 input = torch.randint(low=0,high=256,size=[batch_size,seq_len]) #[64,20] embedding = nn.Embedding(num_embeddings,embedding_dim) input_embeded = embedding(input) #[64,20,100] #转置,变换batch_size 和seq_len
# input_embeded = input_embeded.transpose(0,1)
# input_embeded = input_embeded.permute(1,0,2)
#实例化lstm lstm = nn.LSTM(input_size=embedding_dim,hidden_size=hidden_size,batch_first=True,num_layers=number_layer,bidirectional=True) output,(h_n,c_n) = lstm(input_embeded)
print(output.size()) #[64,20,128*2] [batch_size,seq_len,hidden_size]
print(h_n.size()) #[3*2,64,128] [number_layer,batch_size,hidden_size]
print(c_n.size()) #同上 #获取反向的最后一个output
output_last = output[:,0,-128:]
#获反向最后一层的h_n
h_n_last = h_n[-1] print(output_last.size())
print(h_n_last.size())
# 反向最后的output等于最后一层的h_n
print(output_last.eq(h_n_last)) #获取正向的最后一个output
output_last = output[:,-1,:128]
#获取正向最后一层的h_n
h_n_last = h_n[-2]
# 反向最后的output等于最后一层的h_n
print(output_last.eq(h_n_last))

D:\anaconda\python.exe C:/Users/liuxinyu/Desktop/pytorch_test/day4/双向LSTM练习.py
torch.Size([64, 20, 256])
torch.Size([6, 64, 128])
torch.Size([6, 64, 128])
torch.Size([64, 128])
torch.Size([64, 128])
tensor([[True, True, True, ..., True, True, True],
[True, True, True, ..., True, True, True],
[True, True, True, ..., True, True, True],
...,
[True, True, True, ..., True, True, True],
[True, True, True, ..., True, True, True],
[True, True, True, ..., True, True, True]])
tensor([[True, True, True, ..., True, True, True],
[True, True, True, ..., True, True, True],
[True, True, True, ..., True, True, True],
...,
[True, True, True, ..., True, True, True],
[True, True, True, ..., True, True, True],
[True, True, True, ..., True, True, True]])

Process finished with exit code 0

  

pytorch 中LSTM模型获取最后一层的输出结果,单向或双向的更多相关文章

  1. PyTorch中的Batch Normalization

    Pytorch中的BatchNorm的API主要有: 1 torch.nn.BatchNorm1d(num_features, 2 3 eps=1e-05, 4 5 momentum=0.1, 6 7 ...

  2. Python中利用LSTM模型进行时间序列预测分析

    时间序列模型 时间序列预测分析就是利用过去一段时间内某事件时间的特征来预测未来一段时间内该事件的特征.这是一类相对比较复杂的预测建模问题,和回归分析模型的预测不同,时间序列模型是依赖于事件发生的先后顺 ...

  3. 详解Pytorch中的网络构造,模型save和load,.pth权重文件解析

    转载:https://zhuanlan.zhihu.com/p/53927068 https://blog.csdn.net/wangdongwei0/article/details/88956527 ...

  4. PyTorch中使用深度学习(CNN和LSTM)的自动图像标题

    介绍 深度学习现在是一个非常猖獗的领域 - 有如此多的应用程序日复一日地出现.深入了解深度学习的最佳方法是亲自动手.尽可能多地参与项目,并尝试自己完成.这将帮助您更深入地掌握主题,并帮助您成为更好的深 ...

  5. Pytorch的LSTM的理解

    class torch.nn.LSTM(*args, **kwargs) 参数列表 input_size:x的特征维度 hidden_size:隐藏层的特征维度 num_layers:lstm隐层的层 ...

  6. 转pytorch中训练深度神经网络模型的关键知识点

    版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/weixin_42279044/articl ...

  7. 【小白学PyTorch】6 模型的构建访问遍历存储(附代码)

    文章转载自微信公众号:机器学习炼丹术.欢迎大家关注,这是我的学习分享公众号,100+原创干货. 文章目录: 目录 1 模型构建函数 1.1 add_module 1.2 ModuleList 1.3 ...

  8. pytorch中网络特征图(feture map)、卷积核权重、卷积核最匹配样本、类别激活图(Class Activation Map/CAM)、网络结构的可视化方法

    目录 0,可视化的重要性: 1,特征图(feture map) 2,卷积核权重 3,卷积核最匹配样本 4,类别激活图(Class Activation Map/CAM) 5,网络结构的可视化 0,可视 ...

  9. LSTM模型与前向反向传播算法

    在循环神经网络(RNN)模型与前向反向传播算法中,我们总结了对RNN模型做了总结.由于RNN也有梯度消失的问题,因此很难处理长序列的数据,大牛们对RNN做了改进,得到了RNN的特例LSTM(Long ...

随机推荐

  1. 题解 P2620 虫洞

    总体思路:离散化 + 建图 + 单源最短路(看见人少蒟蒻才敢发题解QAQ) 需要注意的是: 考虑到w范围较大,而实际虫洞数量较小,就只记录虫洞的起点与终点来建图. 建图时,虫洞起点可以去重. 在建图时 ...

  2. Oracle 和SQL Server 中的SQL语句使用区别

    最近开始接触Oracle,想要了解下同SQL Server使用时的区别.搜寻网上信息找到具体区别分类如下: 一.数据类型比较 类型名称 Oracle SQLServer 比较  字符数据类型  CHA ...

  3. A - 无聊的游戏 HDU - 1525(博弈)

    A - 无聊的游戏 HDU - 1525 疫情当下,有两个很无聊的人,小A和小B,准备玩一个游戏,玩法是这样的,从两个自然数开始比赛.第一个玩家小A从两个数字中的较大者减去两个数字中较小者的任何正倍数 ...

  4. C、Guard the empire(贪心)

    链接:https://ac.nowcoder.com/acm/contest/3570/C 来源:牛客网 题目描述 Hbb is a general and respected by the enti ...

  5. java对象clone

    java克隆 为什么需要克隆 我们在很多时候需要使用一个对象去记录另外一个对象的当前状态,对象中可能会有很多属性,如果我们一个一个去设置,不仅不方便,而且效率很低,我们看一个初学者可能遇到的问题 cl ...

  6. 从头捋捋jvm(-java虚拟机)

    jvm 是Java Virtual Machine(Java虚拟机)的缩写,java 虚拟机作为一种跨平台的软件是作用于操作系统之上的,那么认识并了解它的底层运行逻辑对于java开发人员来说很有必要! ...

  7. shell编写一个判断脚本

                                                              shell编写一个判断脚本 4.1问题 本例要求在虚拟机server0上创建/roo ...

  8. 一个关于HttpClient的轮子

    由于本文较长,需要耐住性子阅读,另外本文中涉及到的知识点较多,想要深入学习某知识点可以参考其他博客或官网资料.本文也非源码分析文章,示例中的源码大多是伪代码和剪辑过的代码示例,由于该轮子为公司内部使用 ...

  9. Pytest系列(16)- 分布式测试插件之pytest-xdist的详细使用

    如果你还想从头学起Pytest,可以看看这个系列的文章哦! https://www.cnblogs.com/poloyy/category/1690628.html 前言 平常我们功能测试用例非常多时 ...

  10. itoa、ltoa

    #include <stdlib.h> /*整形转字符型*/ char * itoa(int value, char *string, int radix) { char tmp[33]; ...