688. “马”在棋盘上的概率

已知一个 NxN 的国际象棋棋盘,棋盘的行号和列号都是从 0 开始。即最左上角的格子记为 (0, 0),最右下角的记为 (N-1, N-1)。

现有一个 “马”(也译作 “骑士”)位于 (r, c) ,并打算进行 K 次移动。

如下图所示,国际象棋的 “马” 每一步先沿水平或垂直方向移动 2 个格子,然后向与之相垂直的方向再移动 1 个格子,共有 8 个可选的位置。

现在 “马” 每一步都从可选的位置(包括棋盘外部的)中独立随机地选择一个进行移动,直到移动了 K 次或跳到了棋盘外面。

求移动结束后,“马” 仍留在棋盘上的概率。

示例:

输入: 3, 2, 0, 0

输出: 0.0625

解释:

输入的数据依次为 N, K, r, c

第 1 步时,有且只有 2 种走法令 “马” 可以留在棋盘上(跳到(1,2)或(2,1))。对于以上的两种情况,各自在第2步均有且只有2种走法令 “马” 仍然留在棋盘上。

所以 “马” 在结束后仍在棋盘上的概率为 0.0625。

注意:

N 的取值范围为 [1, 25]

K 的取值范围为 [0, 100]

开始时,“马” 总是位于棋盘上

class Solution {
int[][] move = { { 1, 2 }, { 1, -2 }, { 2, 1 }, { 2, -1 }, { -1, 2 }, { -1, -2 }, { -2, 1 }, { -2, -1 } };
double[][][] dp; public double knightProbability(int N, int K, int r, int c) {
dp = new double[N][N][K + 1];
if (K == 0)
return 1;
return dfs(N, K, r, c);
} private double dfs(int N, int K, int r, int c) {
if (dp[r][c][K] != 0)
return dp[r][c][K];
double res = 0;
for (int i = 0; i < 8; i++) {
int r1 = r + move[i][0];
int c1 = c + move[i][1];
if (r1 >= 0 && r1 < N && c1 >= 0 && c1 < N) {
res += (K == 1 ? 1 : dfs(N, K - 1, r1, c1));
}
}
return dp[r][c][K] = res / 8;
}
}

Java实现 LeetCode 688 “马”在棋盘上的概率(DFS+记忆化搜索)的更多相关文章

  1. leetcode 688. “马”在棋盘上的概率

    题目描述: 已知一个 NxN 的国际象棋棋盘,棋盘的行号和列号都是从 0 开始.即最左上角的格子记为 (0, 0),最右下角的记为 (N-1, N-1). 现有一个 “马”(也译作 “骑士”)位于 ( ...

  2. leetcode@ [329] Longest Increasing Path in a Matrix (DFS + 记忆化搜索)

    https://leetcode.com/problems/longest-increasing-path-in-a-matrix/ Given an integer matrix, find the ...

  3. Java实现 洛谷 P3916 图的遍历(反向DFS+记忆化搜索)

    P3916 图的遍历 输入输出样例 输入 4 3 1 2 2 4 4 3 输出 4 4 3 4 import java.io.BufferedReader; import java.io.IOExce ...

  4. 滑雪_poj_1088(记忆化搜索).java

    滑雪 Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 67987   Accepted: 25013 Description ...

  5. 【Leetcode】1340. Jump Game V 【动态规划/记忆性搜索】

    Given an array of integers arr and an integer d. In one step you can jump from index i to index: i + ...

  6. [Swift]LeetCode688. “马”在棋盘上的概率 | Knight Probability in Chessboard

    On an NxN chessboard, a knight starts at the r-th row and c-th column and attempts to make exactly K ...

  7. LeetCode668马在棋盘上的概率

    已知一个 NxN 的国际象棋棋盘,棋盘的行号和列号都是从 0 开始.即最左上角的格子记为 (0, 0),最右下角的记为 (N-1, N-1). 现有一个 “马”(也译作 “骑士”)位于 (r, c)  ...

  8. Java实现 LeetCode 813 最大平均值和的分组 (DFS+DP记忆化搜索)

    813. 最大平均值和的分组 我们将给定的数组 A 分成 K 个相邻的非空子数组 ,我们的分数由每个子数组内的平均值的总和构成.计算我们所能得到的最大分数是多少. 注意我们必须使用 A 数组中的每一个 ...

  9. Java实现 LeetCode 805 数组的均值分割 (DFS+分析题)

    805. 数组的均值分割 给定的整数数组 A ,我们要将 A数组 中的每个元素移动到 B数组 或者 C数组中.(B数组和C数组在开始的时候都为空) 返回true ,当且仅当在我们的完成这样的移动后,可 ...

随机推荐

  1. FOC: Park变换电角度误差带来的影响

    关于坐标变换已经在这篇博客中提到<FOC中的Clarke变换和Park变换详解>,在FOC算法的实际调试过程中会遇到很多与理论有所偏差的问题,往往这些情况下,需要对理论有较深刻的理解,才能 ...

  2. 模板引擎 Thymeleaf 动态渲染 HTML

    1.添加依赖 <!-- Thymeleaf 模板引擎 --> <dependency> <groupId>org.thymeleaf</groupId> ...

  3. Android广播机制(1)

    目录 简介 发送广播和接收广播方式 广播类型 接收系统广播 动态注册监听网络变化 步骤 优化 静态注册实现开机启动 步骤 注意 简介 就是因为安卓中的每个应用程序都可以对自己感兴趣的广播进行注册,这样 ...

  4. [hdu1533]二分图最大权匹配 || 最小费用最大流

    题意:给一个n*m的地图,'m'表示人,'H'表示房子,求所有人都回到房子所走的距离之和的最小值(距离为曼哈顿距离). 思路:比较明显的二分图最大权匹配模型,将每个人向房子连一条边,边权为曼哈顿距离的 ...

  5. Sharding JDBC整合SpringBoot 2.x 和 MyBatis Plus 进行分库分表

    Sharding JDBC整合SpringBoot 2.x 和 MyBatis Plus 进行分库分表 交易所流水表的单表数据量已经过亿,选用Sharding-JDBC进行分库分表.MyBatis-P ...

  6. C#语言实现推箱子

    话不多说直接上代码 using System; namespace Boxer { class Program { const int WIDTH = 8; const int HEIGHT = 8; ...

  7. js es6深入应用系列(Generator)

    前言 generotor 和 普通函数的不同在于function 的时候加了一个*, 是的,我们看到es5的一个陌生关键字,yield,这个是不寻常的,为什么这么说呢? 这个在c#中,很常见的一个关键 ...

  8. C++内存管理学习笔记(1)

    /****************************************************************/ /*            学习是合作和分享式的! /* Auth ...

  9. Redis 6.0 多线程重磅发布!!!

    Redis 6.0在5.2号这个美好的日子里悄无声息的发布了,这次发布在IT圈犹如一颗惊雷一般,因为这是redis最大的一次改版,首次加入了多线程. 作者Antirez在RC1版本发布时在他的博客写下 ...

  10. Python --表达式和运算符

    表达式 由一个或者几个数字或者变量和运算符组合成的一行代码 通常会返回一个结果 运算符 由一个以上的值经过变化得到新值的过程就叫做运算 用于运算的符号称为运算符 运算符的分类: 算数运算符 比较或者关 ...