Codeforces 789D Weird journey - 欧拉路 - 图论
Little boy Igor wants to become a traveller. At first, he decided to visit all the cities of his motherland — Uzhlyandia.
It is widely known that Uzhlyandia has n cities connected with m bidirectional roads. Also, there are no two roads in the country that connect the same pair of cities, but roads starting and ending in the same city can exist. Igor wants to plan his journey beforehand. Boy thinks a path is good if the path goes over m - 2 roads twice, and over the other 2 exactly once. The good path can start and finish in any city of Uzhlyandia.
Now he wants to know how many different good paths are in Uzhlyandia. Two paths are considered different if the sets of roads the paths goes over exactly once differ. Help Igor — calculate the number of good paths.
The first line contains two integers n, m (1 ≤ n, m ≤ 106) — the number of cities and roads in Uzhlyandia, respectively.
Each of the next m lines contains two integers u and v (1 ≤ u, v ≤ n) that mean that there is road between cities u and v.
It is guaranteed that no road will be given in the input twice. That also means that for every city there is no more than one road that connects the city to itself.
Print out the only integer — the number of good paths in Uzhlyandia.
5 4
1 2
1 3
1 4
1 5
6
5 3
1 2
2 3
4 5
0
2 2
1 1
1 2
1
In first sample test case the good paths are:
- 2 → 1 → 3 → 1 → 4 → 1 → 5,
- 2 → 1 → 3 → 1 → 5 → 1 → 4,
- 2 → 1 → 4 → 1 → 5 → 1 → 3,
- 3 → 1 → 2 → 1 → 4 → 1 → 5,
- 3 → 1 → 2 → 1 → 5 → 1 → 4,
- 4 → 1 → 2 → 1 → 3 → 1 → 5.
There are good paths that are same with displayed above, because the sets of roads they pass over once are same:
- 2 → 1 → 4 → 1 → 3 → 1 → 5,
- 2 → 1 → 5 → 1 → 3 → 1 → 4,
- 2 → 1 → 5 → 1 → 4 → 1 → 3,
- 3 → 1 → 4 → 1 → 2 → 1 → 5,
- 3 → 1 → 5 → 1 → 2 → 1 → 4,
- 4 → 1 → 3 → 1 → 2 → 1 → 5,
- and all the paths in the other direction.
Thus, the answer is 6.
In the second test case, Igor simply can not walk by all the roads.
In the third case, Igor walks once over every road.
题目大意 给定一个有n个顶点和m条边的无向图,问有多少条路径使得恰好(m - 2)条边被经过2次,2条边恰好被经过1次。两条路径被看做不同的,当且仅当它们经过的边的集合不同。
原问题可以转换为将每条边复制一下,然后再删去两条边使得新图存在欧拉路的方案数。
欧拉路存在的两个条件是
1)只存在一个连通块包含的边数大于0
2)度数为奇数的点少于2个。
暂时先不考虑自环的情况,然后可以得到一个结论就是:这两条边的必须存在公共顶点。
然后可以得到一个做法就是枚举每个点,计算和它相连的边中,任选两条的方案数。
现在考虑自环,删掉一个自环使得这个顶点的度数仍然为偶数,所以选取的一条边包含自环,那么另一条边可以任意选。
为了更好地计数,暂时不把自环算入度数,最后统一计算。然后会出现选择的两条边都是自环被计算2次的情况,所以减一减就好了。
Code
/**
* Codeforces
* Problem#789D
* Accepted
* Time: 421ms
* Memory: 37400k
*/
#include <bits/stdc++.h>
#ifndef WIN32
#define Auto "%lld"
#else
#define Auto "%I64d"
#endif
using namespace std;
typedef bool boolean; int n, m;
int *dag;
int* f;
int scc = ;
boolean *haveedge; int find(int x) {
return (f[x] == x) ? (x) : (f[x] = find(f[x]));
} inline void init() {
scanf("%d%d", &n, &m);
dag = new int[(n + )];
f = new int[(n + )];
haveedge = new boolean[(n + )];
memset(dag, , sizeof(int) * (n + ));
for(int i = ; i <= n; i++)
f[i] = i, haveedge[i] = false;
for(int i = , u, v; i <= m; i++) {
scanf("%d%d", &u, &v);
dag[u] += u != v, dag[v] += u != v;
haveedge[u] = haveedge[v] = true;
scc += u == v;
f[find(u)] = find(v);
}
} long long res = ;
int cnt = ;
inline void solve() {
for(int i = ; i <= n; i++) {
res += (dag[i] * 1LL * (dag[i] - )) >> ;
cnt += f[i] == i && haveedge[i];
}
printf(Auto"\n", (cnt == ) ? (res + (scc * 1LL * (m - )) - ((scc * 1LL * (scc - )) >> )) : ());
} int main() {
init();
solve();
return ;
}
Codeforces 789D Weird journey - 欧拉路 - 图论的更多相关文章
- CodeForces - 788B Weird journey 欧拉路
题意:给定n个点,m条边,问能否找到多少条符合条件的路径.需要满足的条件:1.经过m-2条边两次,剩下两条边1次 2.任何两条路的终点和起点不能相同. 欧拉路的条件:存在两个或者0个奇度顶点. 思路 ...
- Codeforces Round #407 (Div. 2) D. Weird journey(欧拉路)
D. Weird journey time limit per test 2 seconds memory limit per test 256 megabytes input standard in ...
- CodeForces - 789D Weird journey
D. Weird journey time limit per test 2 seconds memory limit per test 256 megabytes input standard in ...
- CodeForces 788B - Weird journey [ 分类讨论 ] [ 欧拉通路 ]
题意: 给出无向图. good way : 仅有两条边只经过一次,余下边全经过两次的路 问你共有多少条不同的good way. 两条good way不同仅当它们所经过的边的集合中至少有一条不同 (很关 ...
- 【cf789D】Weird journey(欧拉路、计数)
cf788B/789D. Weird journey 题意 n个点m条边无重边有自环无向图,问有多少种路径可以经过m-2条边两次,其它两条边1次.边集不同的路径就是不同的. 题解 将所有非自环的边变成 ...
- Codeforces Round #407 (Div. 1) B. Weird journey —— dfs + 图
题目链接:http://codeforces.com/problemset/problem/788/B B. Weird journey time limit per test 2 seconds m ...
- codeforces 407 div1 B题(Weird journey)
codeforces 407 div1 B题(Weird journey) 传送门 题意: 给出一张图,n个点m条路径,一条好的路径定义为只有2条路径经过1次,m-2条路径经过2次,图中存在自环.问满 ...
- Weird journey CodeForces - 788B (路径计数)
大意:$n$结点$m$条边无向图, 满足 $(1)$经过$m-2$条边$2$次 $(2)$经过其余$2$条边$1$次 的路径为好路径, 求所有好路径数 相当于边加倍后再删除两条边, 求欧拉路条数 首先 ...
- POJ 1637 Sightseeing tour (混合图欧拉路判定)
Sightseeing tour Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 6986 Accepted: 2901 ...
随机推荐
- vue打包后404,webpack配置问题
首先声明这是基于vue2.x的 1. 将其中build的配置项assetsPublicPath进行修改,改为上图-->目的是将资源文件的引入路径,改为相对地址(相对index.html) 2.h ...
- 关于第一次java课的感想
首先必须承认,这次的题目还是很简单的,因为这道题完全就是换了个包装的小学期题目,也就是说,如果让我用C++来编写,我可以保证3个小时内编写完毕,也许在一些小的方面,比如输入数字的合法性上存在问题,但毕 ...
- 监控Tomcat
监控Tomcat 无论是使用Zabbix.还是jconsole等其他工具,当需要监控Tomcat时,需对Tomcat进行jmx配置.此处以Linux系统为例,配置Tomcat. 注意: 下文中出现的: ...
- PLSQL乱码
PLSQL乱码 博客分类: oracle oracleplsql乱码 问题:PL/SQL插入和更新乱码. 解决乱码问题需要关注的三点: 1. Oracle数据库内部的字符集 2. Oracle客户端 ...
- 水题 O
Bob 和 Alice 开始使用一种全新的编码系统.它是一种基于一组私有钥匙的.他们选择了n个不同的数a1 , . . .,an, 它们都大于0小于等于n. 机密过程如下:待加密的信息放置在这组加密钥 ...
- <2>基本表达式和语句
1.基本表达式 1: =, +, -, *, /, 赋值,加减剩除; lua 没有 c/c++的缩写表达式 += -= *=, ++, --; 2: () 改变运算的优先级; 3: 字符串对象加法.. ...
- [转]sql server 常用脚本(日常查询所需)
1:查看sql server代理中作业的运行状况的脚本 -- descr : a simple sql script to view sql server jobs run status -- las ...
- ubuntu14.04 cpu-ssd
1. ssd-caffe部署 五年半前老笔记本,没有GPU(其实有,AMD的,不能装CUDA),之前装过CPU版的Caffe 新建一个目录,然后参考网上步骤 sudo git clone https: ...
- tomcat 、NIO、netty 本质
tomcat 基于 Socket,面向 web 浏览器的通信容器 nio 同步非阻塞的I/O模型 netty 通信框架,对 nio 的封装
- 20165305 苏振龙《Java程序设计》第四周课上测试补做
第一次测试 第二次测试 第三次测试 上传代码 第四次测试 总结 之前我一直在git bash进行程序设计,但是对于我来说操作起来有点困难,所以我改用了虚拟机,之后之前一直困扰我的问题在虚拟机下就没有了 ...