Codeforces 789D Weird journey - 欧拉路 - 图论
Little boy Igor wants to become a traveller. At first, he decided to visit all the cities of his motherland — Uzhlyandia.
It is widely known that Uzhlyandia has n cities connected with m bidirectional roads. Also, there are no two roads in the country that connect the same pair of cities, but roads starting and ending in the same city can exist. Igor wants to plan his journey beforehand. Boy thinks a path is good if the path goes over m - 2 roads twice, and over the other 2 exactly once. The good path can start and finish in any city of Uzhlyandia.
Now he wants to know how many different good paths are in Uzhlyandia. Two paths are considered different if the sets of roads the paths goes over exactly once differ. Help Igor — calculate the number of good paths.
The first line contains two integers n, m (1 ≤ n, m ≤ 106) — the number of cities and roads in Uzhlyandia, respectively.
Each of the next m lines contains two integers u and v (1 ≤ u, v ≤ n) that mean that there is road between cities u and v.
It is guaranteed that no road will be given in the input twice. That also means that for every city there is no more than one road that connects the city to itself.
Print out the only integer — the number of good paths in Uzhlyandia.
5 4
1 2
1 3
1 4
1 5
6
5 3
1 2
2 3
4 5
0
2 2
1 1
1 2
1
In first sample test case the good paths are:
- 2 → 1 → 3 → 1 → 4 → 1 → 5,
- 2 → 1 → 3 → 1 → 5 → 1 → 4,
- 2 → 1 → 4 → 1 → 5 → 1 → 3,
- 3 → 1 → 2 → 1 → 4 → 1 → 5,
- 3 → 1 → 2 → 1 → 5 → 1 → 4,
- 4 → 1 → 2 → 1 → 3 → 1 → 5.
There are good paths that are same with displayed above, because the sets of roads they pass over once are same:
- 2 → 1 → 4 → 1 → 3 → 1 → 5,
- 2 → 1 → 5 → 1 → 3 → 1 → 4,
- 2 → 1 → 5 → 1 → 4 → 1 → 3,
- 3 → 1 → 4 → 1 → 2 → 1 → 5,
- 3 → 1 → 5 → 1 → 2 → 1 → 4,
- 4 → 1 → 3 → 1 → 2 → 1 → 5,
- and all the paths in the other direction.
Thus, the answer is 6.
In the second test case, Igor simply can not walk by all the roads.
In the third case, Igor walks once over every road.
题目大意 给定一个有n个顶点和m条边的无向图,问有多少条路径使得恰好(m - 2)条边被经过2次,2条边恰好被经过1次。两条路径被看做不同的,当且仅当它们经过的边的集合不同。
原问题可以转换为将每条边复制一下,然后再删去两条边使得新图存在欧拉路的方案数。
欧拉路存在的两个条件是
1)只存在一个连通块包含的边数大于0
2)度数为奇数的点少于2个。
暂时先不考虑自环的情况,然后可以得到一个结论就是:这两条边的必须存在公共顶点。
然后可以得到一个做法就是枚举每个点,计算和它相连的边中,任选两条的方案数。
现在考虑自环,删掉一个自环使得这个顶点的度数仍然为偶数,所以选取的一条边包含自环,那么另一条边可以任意选。
为了更好地计数,暂时不把自环算入度数,最后统一计算。然后会出现选择的两条边都是自环被计算2次的情况,所以减一减就好了。
Code
/**
* Codeforces
* Problem#789D
* Accepted
* Time: 421ms
* Memory: 37400k
*/
#include <bits/stdc++.h>
#ifndef WIN32
#define Auto "%lld"
#else
#define Auto "%I64d"
#endif
using namespace std;
typedef bool boolean; int n, m;
int *dag;
int* f;
int scc = ;
boolean *haveedge; int find(int x) {
return (f[x] == x) ? (x) : (f[x] = find(f[x]));
} inline void init() {
scanf("%d%d", &n, &m);
dag = new int[(n + )];
f = new int[(n + )];
haveedge = new boolean[(n + )];
memset(dag, , sizeof(int) * (n + ));
for(int i = ; i <= n; i++)
f[i] = i, haveedge[i] = false;
for(int i = , u, v; i <= m; i++) {
scanf("%d%d", &u, &v);
dag[u] += u != v, dag[v] += u != v;
haveedge[u] = haveedge[v] = true;
scc += u == v;
f[find(u)] = find(v);
}
} long long res = ;
int cnt = ;
inline void solve() {
for(int i = ; i <= n; i++) {
res += (dag[i] * 1LL * (dag[i] - )) >> ;
cnt += f[i] == i && haveedge[i];
}
printf(Auto"\n", (cnt == ) ? (res + (scc * 1LL * (m - )) - ((scc * 1LL * (scc - )) >> )) : ());
} int main() {
init();
solve();
return ;
}
Codeforces 789D Weird journey - 欧拉路 - 图论的更多相关文章
- CodeForces - 788B Weird journey 欧拉路
题意:给定n个点,m条边,问能否找到多少条符合条件的路径.需要满足的条件:1.经过m-2条边两次,剩下两条边1次 2.任何两条路的终点和起点不能相同. 欧拉路的条件:存在两个或者0个奇度顶点. 思路 ...
- Codeforces Round #407 (Div. 2) D. Weird journey(欧拉路)
D. Weird journey time limit per test 2 seconds memory limit per test 256 megabytes input standard in ...
- CodeForces - 789D Weird journey
D. Weird journey time limit per test 2 seconds memory limit per test 256 megabytes input standard in ...
- CodeForces 788B - Weird journey [ 分类讨论 ] [ 欧拉通路 ]
题意: 给出无向图. good way : 仅有两条边只经过一次,余下边全经过两次的路 问你共有多少条不同的good way. 两条good way不同仅当它们所经过的边的集合中至少有一条不同 (很关 ...
- 【cf789D】Weird journey(欧拉路、计数)
cf788B/789D. Weird journey 题意 n个点m条边无重边有自环无向图,问有多少种路径可以经过m-2条边两次,其它两条边1次.边集不同的路径就是不同的. 题解 将所有非自环的边变成 ...
- Codeforces Round #407 (Div. 1) B. Weird journey —— dfs + 图
题目链接:http://codeforces.com/problemset/problem/788/B B. Weird journey time limit per test 2 seconds m ...
- codeforces 407 div1 B题(Weird journey)
codeforces 407 div1 B题(Weird journey) 传送门 题意: 给出一张图,n个点m条路径,一条好的路径定义为只有2条路径经过1次,m-2条路径经过2次,图中存在自环.问满 ...
- Weird journey CodeForces - 788B (路径计数)
大意:$n$结点$m$条边无向图, 满足 $(1)$经过$m-2$条边$2$次 $(2)$经过其余$2$条边$1$次 的路径为好路径, 求所有好路径数 相当于边加倍后再删除两条边, 求欧拉路条数 首先 ...
- POJ 1637 Sightseeing tour (混合图欧拉路判定)
Sightseeing tour Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 6986 Accepted: 2901 ...
随机推荐
- vue中打印显示++的问题解决方案(做成类似同步的操作就行了)
这个问题,困扰我很久很久 怎么实现的呢?首先进入页面就开始调取打印接口,打印接口的成功回调函数里面写 this.hasOut++(这是实时显示的数量)this.width=(this.hasOut/t ...
- cocos2d JS-(JavaScript) 检测DOM是否可用
function domReady(f) { if (domReady.done) {//如果已经加载完成 马上执行函数 return f(); } if (domReady.timer) {//如果 ...
- Mysql自增ID起始值修改
在mysql中很多朋友都认为字段为AUTO_INCREMENT类型自增ID值是无法修改,其实这样理解是错误的,下面介绍mysql自增ID的起始值修改与设置方法.通常的设置自增字段的方法:创建表格时添加 ...
- gispro发布vectortile笔记
1.https://www.cnblogs.com/escage/p/6387529.html 矢量切片的作用.对于地图中的基础数据图层,或者数据量比较大的矢量图层,只是作渲染用.则需要制作矢量切片, ...
- Day5 装饰器和文件操作
一.装饰器 1.什么是装饰器 装饰器即函数 装饰即修饰,意指为其他函数添加新功能 装饰器定义:本质就是函数,功能是为其他函数添加新功能 2. 装饰器需要遵循的原则 1.不修改被装饰函数的源代码(开放封 ...
- vs2013未找到与约束匹配的导出
解决方法: 1.关闭VS: 2.去C:/Users/<your users name>/AppData/Local/Microsoft/VisualStudio/12.0/Componen ...
- [转]LoadRunner 各个指标分析
转载:https://www.cnblogs.com/dvbbs2012/p/4073635.html 我们要监视CPU,内存.硬盘的资源情况.得到以下的参数提供分析的依据.%processor ti ...
- 【Scala学习之一】 Scala基础语法
环境 虚拟机:VMware 10 Linux版本:CentOS-6.5-x86_64 客户端:Xshell4 FTP:Xftp4 jdk1.8 scala-2.10.4(依赖jdk1.8) spark ...
- Vue + vant-UI 打造移动商城
- windows环境下 curl 安装和使用
curl下载地址:https://curl.haxx.se/download.html,拉到页面最底下,选择红色选中的那个CAB的进行下载,如下图所示: 下载完成后,解压. 解决windows控制台c ...