Codeforces 789D Weird journey - 欧拉路 - 图论
Little boy Igor wants to become a traveller. At first, he decided to visit all the cities of his motherland — Uzhlyandia.
It is widely known that Uzhlyandia has n cities connected with m bidirectional roads. Also, there are no two roads in the country that connect the same pair of cities, but roads starting and ending in the same city can exist. Igor wants to plan his journey beforehand. Boy thinks a path is good if the path goes over m - 2 roads twice, and over the other 2 exactly once. The good path can start and finish in any city of Uzhlyandia.
Now he wants to know how many different good paths are in Uzhlyandia. Two paths are considered different if the sets of roads the paths goes over exactly once differ. Help Igor — calculate the number of good paths.
The first line contains two integers n, m (1 ≤ n, m ≤ 106) — the number of cities and roads in Uzhlyandia, respectively.
Each of the next m lines contains two integers u and v (1 ≤ u, v ≤ n) that mean that there is road between cities u and v.
It is guaranteed that no road will be given in the input twice. That also means that for every city there is no more than one road that connects the city to itself.
Print out the only integer — the number of good paths in Uzhlyandia.
5 4
1 2
1 3
1 4
1 5
6
5 3
1 2
2 3
4 5
0
2 2
1 1
1 2
1
In first sample test case the good paths are:
- 2 → 1 → 3 → 1 → 4 → 1 → 5,
- 2 → 1 → 3 → 1 → 5 → 1 → 4,
- 2 → 1 → 4 → 1 → 5 → 1 → 3,
- 3 → 1 → 2 → 1 → 4 → 1 → 5,
- 3 → 1 → 2 → 1 → 5 → 1 → 4,
- 4 → 1 → 2 → 1 → 3 → 1 → 5.
There are good paths that are same with displayed above, because the sets of roads they pass over once are same:
- 2 → 1 → 4 → 1 → 3 → 1 → 5,
- 2 → 1 → 5 → 1 → 3 → 1 → 4,
- 2 → 1 → 5 → 1 → 4 → 1 → 3,
- 3 → 1 → 4 → 1 → 2 → 1 → 5,
- 3 → 1 → 5 → 1 → 2 → 1 → 4,
- 4 → 1 → 3 → 1 → 2 → 1 → 5,
- and all the paths in the other direction.
Thus, the answer is 6.
In the second test case, Igor simply can not walk by all the roads.
In the third case, Igor walks once over every road.
题目大意 给定一个有n个顶点和m条边的无向图,问有多少条路径使得恰好(m - 2)条边被经过2次,2条边恰好被经过1次。两条路径被看做不同的,当且仅当它们经过的边的集合不同。
原问题可以转换为将每条边复制一下,然后再删去两条边使得新图存在欧拉路的方案数。
欧拉路存在的两个条件是
1)只存在一个连通块包含的边数大于0
2)度数为奇数的点少于2个。
暂时先不考虑自环的情况,然后可以得到一个结论就是:这两条边的必须存在公共顶点。
然后可以得到一个做法就是枚举每个点,计算和它相连的边中,任选两条的方案数。
现在考虑自环,删掉一个自环使得这个顶点的度数仍然为偶数,所以选取的一条边包含自环,那么另一条边可以任意选。
为了更好地计数,暂时不把自环算入度数,最后统一计算。然后会出现选择的两条边都是自环被计算2次的情况,所以减一减就好了。
Code
/**
* Codeforces
* Problem#789D
* Accepted
* Time: 421ms
* Memory: 37400k
*/
#include <bits/stdc++.h>
#ifndef WIN32
#define Auto "%lld"
#else
#define Auto "%I64d"
#endif
using namespace std;
typedef bool boolean; int n, m;
int *dag;
int* f;
int scc = ;
boolean *haveedge; int find(int x) {
return (f[x] == x) ? (x) : (f[x] = find(f[x]));
} inline void init() {
scanf("%d%d", &n, &m);
dag = new int[(n + )];
f = new int[(n + )];
haveedge = new boolean[(n + )];
memset(dag, , sizeof(int) * (n + ));
for(int i = ; i <= n; i++)
f[i] = i, haveedge[i] = false;
for(int i = , u, v; i <= m; i++) {
scanf("%d%d", &u, &v);
dag[u] += u != v, dag[v] += u != v;
haveedge[u] = haveedge[v] = true;
scc += u == v;
f[find(u)] = find(v);
}
} long long res = ;
int cnt = ;
inline void solve() {
for(int i = ; i <= n; i++) {
res += (dag[i] * 1LL * (dag[i] - )) >> ;
cnt += f[i] == i && haveedge[i];
}
printf(Auto"\n", (cnt == ) ? (res + (scc * 1LL * (m - )) - ((scc * 1LL * (scc - )) >> )) : ());
} int main() {
init();
solve();
return ;
}
Codeforces 789D Weird journey - 欧拉路 - 图论的更多相关文章
- CodeForces - 788B Weird journey 欧拉路
题意:给定n个点,m条边,问能否找到多少条符合条件的路径.需要满足的条件:1.经过m-2条边两次,剩下两条边1次 2.任何两条路的终点和起点不能相同. 欧拉路的条件:存在两个或者0个奇度顶点. 思路 ...
- Codeforces Round #407 (Div. 2) D. Weird journey(欧拉路)
D. Weird journey time limit per test 2 seconds memory limit per test 256 megabytes input standard in ...
- CodeForces - 789D Weird journey
D. Weird journey time limit per test 2 seconds memory limit per test 256 megabytes input standard in ...
- CodeForces 788B - Weird journey [ 分类讨论 ] [ 欧拉通路 ]
题意: 给出无向图. good way : 仅有两条边只经过一次,余下边全经过两次的路 问你共有多少条不同的good way. 两条good way不同仅当它们所经过的边的集合中至少有一条不同 (很关 ...
- 【cf789D】Weird journey(欧拉路、计数)
cf788B/789D. Weird journey 题意 n个点m条边无重边有自环无向图,问有多少种路径可以经过m-2条边两次,其它两条边1次.边集不同的路径就是不同的. 题解 将所有非自环的边变成 ...
- Codeforces Round #407 (Div. 1) B. Weird journey —— dfs + 图
题目链接:http://codeforces.com/problemset/problem/788/B B. Weird journey time limit per test 2 seconds m ...
- codeforces 407 div1 B题(Weird journey)
codeforces 407 div1 B题(Weird journey) 传送门 题意: 给出一张图,n个点m条路径,一条好的路径定义为只有2条路径经过1次,m-2条路径经过2次,图中存在自环.问满 ...
- Weird journey CodeForces - 788B (路径计数)
大意:$n$结点$m$条边无向图, 满足 $(1)$经过$m-2$条边$2$次 $(2)$经过其余$2$条边$1$次 的路径为好路径, 求所有好路径数 相当于边加倍后再删除两条边, 求欧拉路条数 首先 ...
- POJ 1637 Sightseeing tour (混合图欧拉路判定)
Sightseeing tour Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 6986 Accepted: 2901 ...
随机推荐
- css省...和div 内容过多,自动换行
1.shengluohao 就是这个... 加: overflow: hidden;/*超出部分隐藏*/ white-space: nowrap;/*不换行*/ text-overflow:ellip ...
- mac系统搭建SVN版本控制
版权声明:本文为博主原创文章,未经博主允许不得转载. SmartSVN 8.6和Keygen for mac(完美破解)http://pan.baidu.com/s/1bnm72qz 一.里面包含Sm ...
- C#将List<>转换为Json,将DataSet转成List<T>
转换 参考:https://blog.csdn.net/u011176794/article/details/52670339 参考:https://blog.csdn.net/my98800/ar ...
- 读书笔记_Effective_C++_条款二:尽量以const, enum, inline替换#define
其实这个条款分成两部分介绍会比较好,第一部分是用const和enum替换不带参的宏,第二部分是用inline替换带参的宏. 第一部分:用const和enum替换不带参宏 宏定义#define发生在预编 ...
- can not create symbolic link HDFS解压自动配置lib报错。
如题,使用FusionInsight解压生成样例代码的时候报错,找不到解释.只猜测是权限问题.然后并没有仔细静心思考,心里杂念很多,很浮躁. 解决方法是“以管理员身份运行“. 想想高中:面对问题,不能 ...
- beego 初体验 - orm
goland Terminal运行命令: go get github.com/astaxie/beego/orm 安装go mysql驱动: go get github.com/go-sql-driv ...
- .NET 黑魔法 - 自定义日志扩展
我们开发程序时避免不了要有日志系统,我们希望有一个通用的.不夹杂任何方言的调用方式,简单地说就是保留微软日志框架的注入方式和使用方式. 比如我们希望这样调用: 我们不希望有个 IAbcLogger, ...
- javascript 面向对象之路.2 - 小蜜蜂
接着上篇文章继续. 要实现上篇中gif图片的效果, 我们要写js, 算法并不是很复杂, 本次也仅仅展示了实现功能的代码, 并没有从面向对象的角度去构思或重构代码. 这里, 我们定义了一些变量, 用来定 ...
- Python记录2:数据类型
一Python的数据类型可以分为可变与不可变两种: 可变类型:值改变,但是id不变,证明就是在改变原值,就是可变类型 如list dict 列表和字典都是可变类型 不可变类型:值改变,id也跟着改 ...
- 2. Python3输入与输出
数据的输入和输出操作是计算机最基本的操作,本节只研究基本的输入与输出,基本输入是指从键盘上输入数据的操作,基本输出是指屏幕上显示输出结果的操作. 2.1基本输入和输出 常用的输入与输出设备有很多,如摄 ...