题目背景

2018 年 7 月 19 日,某位同学在 NOI Day 1 T1 归程 一题里非常熟练地使用了一个广为人知的算法求最短路。

然后呢?

100→60;

Ag→Cu;

最终,他因此没能与理想的大学达成契约。

小 F 衷心祝愿大家不再重蹈覆辙。

题目描述

给定一个 N 个点,M 条有向边的带非负权图,请你计算从 S 出发,到每个点的距离。

数据保证你能从 S 出发到任意点。

输入输出格式

输入格式:

第一行为三个正整数 N, M, S。 第二行起 M 行,每行三个非负整数 ,表示从 到  有一条权值为 的边。

输出格式:

输出一行 N 个空格分隔的非负整数,表示 S 到每个点的距离。

输入输出样例

输入样例#1: 复制

4 6 1
1 2 2
2 3 2
2 4 1
1 3 5
3 4 3
1 4 4

输出样例#1: 复制

0 2 4 3

说明

样例解释请参考 数据随机的模板题

本题数据可能会持续更新,但不会重测,望周知。

2018.09.04 数据更新 from @zzq

#include <stdio.h>
#include <string.h>
#include <iostream>
#include <algorithm>
#include <math.h>
#include <limits.h>
#include <map>
#include <stack>
#include <queue>
#include <vector>
#include <set>
#include <string>
#define ll long long
#define ull unsigned long long
#define ms(a) memset(a,0,sizeof(a))
#define msf(a) memset(a,INF,sizeof(a))
#define msy(a) memset(a,-1,sizeof(a))
#define pi acos(-1.0)
#define INF 0x7f7f7f7f
#define lson o<<1
#define rson o<<1|1
const double E=exp(1);
const int maxn=1e6+10;
const int mod=1e9+7;
using namespace std;
inline int read()
{
int X=0,w=1;
char c=getchar();
while (c<'0'||c>'9') { if (c=='-') w=-1; c=getchar(); }
while (c>='0'&&c<='9') X=(X<<3)+(X<<1)+c-'0',c=getchar();
return X*w;
}
struct wzy
{
int Next,to,w;
}edge[maxn];
int cnt;
int n,m;
int head[maxn];
int dis[maxn];
struct node
{
int u,d;
bool operator < (const node& dui) const {return d>dui.d;}
};
inline void add(int u,int v,int w)
{
edge[cnt].Next=head[u];
edge[cnt].w=w;
edge[cnt].to=v;
head[u]=cnt++;
}
inline void dijkstra(int a)
{
msf(dis);
priority_queue<node>q;
q.push(node{a,0});
dis[a]=0;
while(!q.empty())
{
node res=q.top();q.pop();
int u=res.u,d=res.d;
/////////////////////
// 注意:没有下面这个会超时!!!
/////////////////////
if(d!=dis[u])
continue;
for(int k=head[u];~k;k=edge[k].Next)
{
int v=edge[k].to,w=edge[k].w;
if(dis[v]>dis[u]+edge[k].w)
{
dis[v]=dis[u]+w;
q.push((node){v,dis[v]});
}
}
}
}
int main(int argc, char const *argv[])
{
int n,m,s;
msy(head);
n=read();m=read();s=read();
int x,y,z;
while(m--)
{
x=read();y=read();z=read();
add(x,y,z);
}
dijkstra(s);
for(int i=1;i<=n;i++)
{
printf("%d ",dis[i]);
}
printf("\n");
return 0;
}

洛谷 P4779 :【模板】单源最短路径(标准版)(Dijkstra+堆优化+链式前向星)的更多相关文章

  1. 洛谷 P4779 【dijkstra】+(堆优化)+(链式前向星) (模板题)

    <题目链接> 题目描述 给定一个 N 个点, M 条有向边的带非负权图,请你计算从 S 出发,到每个点的距离. 数据保证你能从 S 出发到任意点. 输入格式: 第一行为三个正整数 N,M, ...

  2. 洛谷 P1352 没有上司的舞会【树形DP/邻接链表+链式前向星】

    题目描述 某大学有N个职员,编号为1~N.他们之间有从属关系,也就是说他们的关系就像一棵以校长为根的树,父结点就是子结点的直接上司.现在有个周年庆宴会,宴会每邀请来一个职员都会增加一定的快乐指数Ri, ...

  3. 单源最短路——朴素Dijkstra&堆优化版

    朴素Dijkstra 是一种基于贪心的算法. 稠密图使用二维数组存储点和边,稀疏图使用邻接表存储点和边. 算法步骤: 1.将图上的初始点看作一个集合S,其它点看作另一个集合 2.根据初始点,求出其它点 ...

  4. 单源最短路径问题2 (Dijkstra算法)

    用邻接矩阵 /* 单源最短路径问题2 (Dijkstra算法) 样例: 5 7 0 1 3 0 3 7 1 2 4 1 3 2 2 3 5 2 4 6 3 4 4 输出: [0, 3, 7, 5, 9 ...

  5. 单元最短路径算法模板汇总(Dijkstra, BF,SPFA),附链式前向星模板

    一:dijkstra算法时间复杂度,用优先级队列优化的话,O((M+N)logN)求单源最短路径,要求所有边的权值非负.若图中出现权值为负的边,Dijkstra算法就会失效,求出的最短路径就可能是错的 ...

  6. 【模板】链式前向星+spfa

    洛谷传送门--分糖果 博客--链式前向星 团队中一道题,数据很大,只能用链式前向星存储,spfa求单源最短路. 可做模板. #include <cstdio> #include <q ...

  7. 模板 Dijkstra+链式前向星+堆优化(非原创)

    我们首先来看一下什么是前向星.   前向星是一种特殊的边集数组,我们把边集数组中的每一条边按照起点从小到大排序,如果起点相同就按照终点从小到大排序, 并记录下以某个点为起点的所有边在数组中的起始位置和 ...

  8. 图论(四)------非负权有向图的单源最短路径问题,Dijkstra算法

    Dijkstra算法解决了有向图G=(V,E)上带权的单源最短路径问题,但要求所有边的权值非负. Dijkstra算法是贪婪算法的一个很好的例子.设置一顶点集合S,从源点s到集合中的顶点的最终最短路径 ...

  9. 单源最短路径问题之dijkstra算法

    欢迎探讨,如有错误敬请指正 如需转载,请注明出处 http://www.cnblogs.com/nullzx/ 1. 算法的原理 以源点开始,以源点相连的顶点作为向外延伸的顶点,在所有这些向外延伸的顶 ...

随机推荐

  1. 快速搭建springboot框架以及整合ssm+shiro+安装Rabbitmq和Erlang、Mysql下载与配置

    1.快速搭建springboot框架(在idea中): file–>new project–>Spring Initializr–>next–>然后一直下一步. 然后复制一下代 ...

  2. 转:Java工程师成神之路~(2018修订版)

    转: http://www.hollischuang.com/archives/489 阿里大牛珍藏架构资料,点击链接免费获取 针对本文,博主最近在写<成神之路系列文章> ,分章分节介绍所 ...

  3. nodejs安装 淘宝镜像

    1◆ nodejs下载 2◆ 安装 3◆ 测试   4◆ 淘宝镜像 npm install -g cnpm --registry=https://registry.npm.taobao.org   5 ...

  4. window.open打开新窗口 参数

    1,基本描述 oNewWindow = window.open( sURL , sName , sFeatures, bReplace) window.open在打开一个窗口(其url为sURL)后, ...

  5. Win10系列:UWP界面布局进阶1

    全新的Windows 10 操作系统支持多种视图模式,用户可以根据需要选择不同的视图模式显示应用.当用户同时浏览或操作多个应用程序时,可以将应用视图调整为辅屏视图或填充视图,这样在一个屏幕中可以同时对 ...

  6. global 全局变量 nonlocal 局部变量

    # x= # def func(): # x= # # func() # print(x) # x=[] # def func(): # x.append() # x.append() # x.app ...

  7. UVALive 3401 - Colored Cubes 旋转 难度: 1

    题目 https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemid=8&page=show_pr ...

  8. windows上dubbo-admin的安装

    dubbo-admin的安装 (1)先下载好zookeeper包,因为启动dubbo-admin时需要先启动zookeeper zookeeper:dubbo的注册中心(自己下载 ,找到bin目录下的 ...

  9. MYSQL的存储函数

    创建存储函数与创建存储过程大体相同,格式如下: create function sp_name([func_parameter[,...]]) returns type [characteristic ...

  10. Excel 数据读入到DataSet

    using System; using System.Collections.Generic; using System.Linq; using System.Data; using System.I ...