You are given two sequences of integer numbers. Write a program to determine their common increasing subsequence of maximal 
possible length.

Sequence S1, S2, ..., SN of length N is called an increasing subsequence of a sequence A1, A2, ..., AM of length M if there exist 1 <= i1 < i2 < ...< iN <= M such that Sj = Aij for all 1 <= j <= N, and Sj < Sj+1 for all 1 <= j < N.

Input

Each sequence is described with M - its length (1 <= M <= 500) and M integer numbers Ai (-2^31 <= Ai < 2^31) - the sequence itself.

Output

On the first line of the output print L - the length of the greatest common increasing subsequence of both sequences. On the second line print the subsequence itself. If there are several possible answers, output any of them.

This problem contains multiple test cases!

The first line of a multiple input is an integer N, then a blank line followed by N input blocks. Each input block is in the format indicated in the problem description. There is a blank line between input blocks.

The output format consists of N output blocks. There is a blank line between output blocks.


Sample Input

1

5
1 4 2 5 -12
4
-12 1 2 4

Sample Output

2
1 4

题意 

输出两个序列的最长公共上升子序列。

分析

初始想法:定义dp[i][j]为以a[i]和b[j]为结尾的LCIS,这样转移时得找ax<ai以及by<bj,需要n^2,加上转移的循环,总复杂度n^4,TLE。

正解:既然上述定义超时,那么我们尝试减少一维,即把dp[i][j]定义为a[1...i]和b[1...j]并以b[j]为结尾的LCIS。

当a[i]==b[j],由LCS的转移可知由dp[i-1][j-1],但由于我们定义的这个状态,转移应为dp[i][j]=max(dp[i][k]),k<j。

当a[i]!=b[j],dp[i][j]=dp[i-1][j],因为规定了以b[j]为结尾,所以此时不可以由dp[i][j-1]转移而来。

另外可以优化一下,因为j是从小到大枚举的,那么我们可以保存当前行最大的dp[i][k]且符合b[k]<a[i](为了某个a[i]==b[x]的转移服务),到需要转移时就可以直接使用了

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<algorithm>
#include<cstring>
#include <queue>
#include <vector>
#include<bitset>
#include<map>
#include<deque>
using namespace std;
typedef long long LL;
const int maxn = 1e4+;
const int mod = +;
typedef pair<int,int> pii;
#define X first
#define Y second
#define pb push_back
//#define mp make_pair
#define ms(a,b) memset(a,b,sizeof(a))
const int inf = 0x3f3f3f3f;
#define lson l,m,2*rt
#define rson m+1,r,2*rt+1
typedef long long ll;
#define N 100010 int a[],b[];
int dp[][],pos[][]; int main(){
#ifdef LOCAL
freopen("in.txt","r",stdin);
#endif // LOCAL
int t,n,m;
scanf("%d",&t);
while(t--){
scanf("%d",&n);
for(int i=;i<=n;i++) scanf("%d",&a[i]);
scanf("%d",&m);
for(int j=;j<=m;j++) scanf("%d",&b[j]);
ms(dp,); int ans=-,mx,ei=,ej=,mj;
for(int i=;i<=n;i++){
mx=;
for(int j=;j<=m;j++){
dp[i][j]=dp[i-][j];
pos[i][j]=-;
if(b[j]<a[i]&&dp[i-][j]>mx){
mx=dp[i-][j];
mj=j;
}else if(a[i]==b[j]){
dp[i][j]=mx+;
pos[i][j]=mj;
}
if(ans<dp[i][j]){
ans=dp[i][j];
ei=i;
ej=j;
}
}
}
cout<<ans<<endl;
int temp[];
int tmp=ans;
while(ans){
if(pos[ei][ej]!=-){
temp[ans--]=b[ej];
ej=pos[ei][ej];
}
ei--;
}
for(int i=;i<=tmp;i++){
printf("%d%c",temp[i],i==tmp?'\n':' ');
}
if(t) puts("");
}
return ;
}

POJ 2127 Greatest Common Increasing Subsequence的更多相关文章

  1. POJ 2127 Greatest Common Increasing Subsequence -- 动态规划

    题目地址:http://poj.org/problem?id=2127 Description You are given two sequences of integer numbers. Writ ...

  2. 最长公共上升子序列 (poj 2127) (Greatest Common Increasing Subsequence)

    \(Greatest Common Increasing Subsequence\) 大致题意:给出两个长度不一定相等的数列,求其中最长的公共的且单调递增的子序列(需要具体方案) \(solution ...

  3. 【简单dp】poj 2127 Greatest Common Increasing Subsequence【最长公共上升子序列】【模板】

    Sample Input 5 1 4 2 5 -12 4 -12 1 2 4 Sample Output 2 1 4 题目:给你两个数字序列,求出这两个序列的最长公共上升子序列.输出最长的长度,并打表 ...

  4. POJ 1423 Greatest Common Increasing Subsequence【裸LCIS】

    链接: http://acm.hdu.edu.cn/showproblem.php?pid=1423 http://acm.hust.edu.cn/vjudge/contest/view.action ...

  5. LCIS POJ 2172 Greatest Common Increasing Subsequence

    题目传送门 题意:LCIS(Longest Common Increasing Subsequence) 最长公共上升子序列 分析:a[i] != b[j]: dp[i][j] = dp[i-1][j ...

  6. HDU 1423 Greatest Common Increasing Subsequence LCIS

    题目链接: 题目 Greatest Common Increasing Subsequence Time Limit: 2000/1000 MS (Java/Others) Memory Limit: ...

  7. HDOJ 1423 Greatest Common Increasing Subsequence -- 动态规划

    题目地址:http://acm.hdu.edu.cn/showproblem.php?pid=1423 Problem Description This is a problem from ZOJ 2 ...

  8. ZOJ 2432 Greatest Common Increasing Subsequence(最长公共上升子序列+路径打印)

    Greatest Common Increasing Subsequence 题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problem ...

  9. HDU 1423 Greatest Common Increasing Subsequence(最长公共上升LCIS)

    HDU 1423 Greatest Common Increasing Subsequence(最长公共上升LCIS) http://acm.hdu.edu.cn/showproblem.php?pi ...

随机推荐

  1. PAT 1033 旧键盘打字

    https://pintia.cn/problem-sets/994805260223102976/problems/994805288530460672 旧键盘上坏了几个键,于是在敲一段文字的时候, ...

  2. [转载]以及部分总结--Linux下创建单机ASM存储的Oracle实例的过程---感谢方总

    Linux下单机安装ASM流程总结 一.安装Linux ESXi上传iso镜像至存储目录 创建虚拟机,并且选择主机设备的ISO启动 选择完成时编辑虚拟机设置 配置镜像文件如下: 打开控制台: 并且选择 ...

  3. centos网络yum源的安装

    CentOS使用EPEL YUM源EPEL (Extra Packages for Enterprise Linux)是基于Fedora的一个项目,为“红帽系”的操作系统提供额外的软件包,适用于RHE ...

  4. jmeter创建基本的FTP测试计划

    这个测试计划中创建4个用户从FTP站点请求2个文件,也可以让用户重复发送2次请求,这样总请求次数=4*2*2=16 使用以下元素:thread group / FTP Request /FTP Req ...

  5. Centos7 Journald 指令

    Journald是为Linux服务器打造的新系统日志方式,它标志着文本日志文件的终结.现在日志信息写入到二进制文件,使用journalctl阅读,要获得这些信息,Linux管理员将需要一些实践. Re ...

  6. Luogu4238 【模板】多项式求逆(NTT)

    http://blog.miskcoo.com/2015/05/polynomial-inverse 好神啊! B(x)=B'(x)·(2-A(x)B'(x)) 注意ntt的时候防止项数溢出,即将多项 ...

  7. python中json.load()、json.loads()、json.dump()、json.dumps()的区别

    json.load()从文件中读取json字符串 json.loads()将json字符串转换为字典类型 json.dumps()将python中的字典类型转换为字符串类型 json.dump()将j ...

  8. float 、double 加减乘除出现小数位多出的问题

    /** * 提供精確的加法運算 * @param args */ public static double add(double v1, double v2) { BigDecimal b1 = ne ...

  9. MT【40】一道联赛二试题

    让我通过这道题来演示如何利用切比雪夫多项式的内功心法: 评:如此大道至简,当年为之叫绝的精彩的做法

  10. 初探react(一)

    我们学习react首先是要了解react是什么,以及他的特点. React 是一个用于构建用户界面的 JAVASCRIPT 库,起源于 Facebook 的内部项目,用来架设 Instagram 的网 ...