POJ 2127 Greatest Common Increasing Subsequence
You are given two sequences of integer numbers. Write a program to determine their common increasing subsequence of maximal
possible length.
Sequence S1, S2, ..., SN of length N is called an increasing subsequence of a sequence A1, A2, ..., AM of length M if there exist 1 <= i1 < i2 < ...< iN <= M such that Sj = Aij for all 1 <= j <= N, and Sj < Sj+1 for all 1 <= j < N.
Input
Each sequence is described with M - its length (1 <= M <= 500) and M integer numbers Ai (-2^31 <= Ai < 2^31) - the sequence itself.
Output
On the first line of the output print L - the length of the greatest common increasing subsequence of both sequences. On the second line print the subsequence itself. If there are several possible answers, output any of them.
This problem contains multiple test cases!
The first line of a multiple input is an integer N, then a blank line followed by N input blocks. Each input block is in the format indicated in the problem description. There is a blank line between input blocks.
The output format consists of N output blocks. There is a blank line between output blocks.
Sample Input
1
5
1 4 2 5 -12
4
-12 1 2 4
Sample Output
2
1 4
题意
输出两个序列的最长公共上升子序列。
分析
初始想法:定义dp[i][j]为以a[i]和b[j]为结尾的LCIS,这样转移时得找ax<ai以及by<bj,需要n^2,加上转移的循环,总复杂度n^4,TLE。
正解:既然上述定义超时,那么我们尝试减少一维,即把dp[i][j]定义为a[1...i]和b[1...j]并以b[j]为结尾的LCIS。
当a[i]==b[j],由LCS的转移可知由dp[i-1][j-1],但由于我们定义的这个状态,转移应为dp[i][j]=max(dp[i][k]),k<j。
当a[i]!=b[j],dp[i][j]=dp[i-1][j],因为规定了以b[j]为结尾,所以此时不可以由dp[i][j-1]转移而来。
另外可以优化一下,因为j是从小到大枚举的,那么我们可以保存当前行最大的dp[i][k]且符合b[k]<a[i](为了某个a[i]==b[x]的转移服务),到需要转移时就可以直接使用了
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<algorithm>
#include<cstring>
#include <queue>
#include <vector>
#include<bitset>
#include<map>
#include<deque>
using namespace std;
typedef long long LL;
const int maxn = 1e4+;
const int mod = +;
typedef pair<int,int> pii;
#define X first
#define Y second
#define pb push_back
//#define mp make_pair
#define ms(a,b) memset(a,b,sizeof(a))
const int inf = 0x3f3f3f3f;
#define lson l,m,2*rt
#define rson m+1,r,2*rt+1
typedef long long ll;
#define N 100010 int a[],b[];
int dp[][],pos[][]; int main(){
#ifdef LOCAL
freopen("in.txt","r",stdin);
#endif // LOCAL
int t,n,m;
scanf("%d",&t);
while(t--){
scanf("%d",&n);
for(int i=;i<=n;i++) scanf("%d",&a[i]);
scanf("%d",&m);
for(int j=;j<=m;j++) scanf("%d",&b[j]);
ms(dp,); int ans=-,mx,ei=,ej=,mj;
for(int i=;i<=n;i++){
mx=;
for(int j=;j<=m;j++){
dp[i][j]=dp[i-][j];
pos[i][j]=-;
if(b[j]<a[i]&&dp[i-][j]>mx){
mx=dp[i-][j];
mj=j;
}else if(a[i]==b[j]){
dp[i][j]=mx+;
pos[i][j]=mj;
}
if(ans<dp[i][j]){
ans=dp[i][j];
ei=i;
ej=j;
}
}
}
cout<<ans<<endl;
int temp[];
int tmp=ans;
while(ans){
if(pos[ei][ej]!=-){
temp[ans--]=b[ej];
ej=pos[ei][ej];
}
ei--;
}
for(int i=;i<=tmp;i++){
printf("%d%c",temp[i],i==tmp?'\n':' ');
}
if(t) puts("");
}
return ;
}
POJ 2127 Greatest Common Increasing Subsequence的更多相关文章
- POJ 2127 Greatest Common Increasing Subsequence -- 动态规划
题目地址:http://poj.org/problem?id=2127 Description You are given two sequences of integer numbers. Writ ...
- 最长公共上升子序列 (poj 2127) (Greatest Common Increasing Subsequence)
\(Greatest Common Increasing Subsequence\) 大致题意:给出两个长度不一定相等的数列,求其中最长的公共的且单调递增的子序列(需要具体方案) \(solution ...
- 【简单dp】poj 2127 Greatest Common Increasing Subsequence【最长公共上升子序列】【模板】
Sample Input 5 1 4 2 5 -12 4 -12 1 2 4 Sample Output 2 1 4 题目:给你两个数字序列,求出这两个序列的最长公共上升子序列.输出最长的长度,并打表 ...
- POJ 1423 Greatest Common Increasing Subsequence【裸LCIS】
链接: http://acm.hdu.edu.cn/showproblem.php?pid=1423 http://acm.hust.edu.cn/vjudge/contest/view.action ...
- LCIS POJ 2172 Greatest Common Increasing Subsequence
题目传送门 题意:LCIS(Longest Common Increasing Subsequence) 最长公共上升子序列 分析:a[i] != b[j]: dp[i][j] = dp[i-1][j ...
- HDU 1423 Greatest Common Increasing Subsequence LCIS
题目链接: 题目 Greatest Common Increasing Subsequence Time Limit: 2000/1000 MS (Java/Others) Memory Limit: ...
- HDOJ 1423 Greatest Common Increasing Subsequence -- 动态规划
题目地址:http://acm.hdu.edu.cn/showproblem.php?pid=1423 Problem Description This is a problem from ZOJ 2 ...
- ZOJ 2432 Greatest Common Increasing Subsequence(最长公共上升子序列+路径打印)
Greatest Common Increasing Subsequence 题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problem ...
- HDU 1423 Greatest Common Increasing Subsequence(最长公共上升LCIS)
HDU 1423 Greatest Common Increasing Subsequence(最长公共上升LCIS) http://acm.hdu.edu.cn/showproblem.php?pi ...
随机推荐
- Java 线程内 递归 Bug 一例
一个线程的run方法里使用递归方法,出了Bug. private boolean ispass(String creationId){ List<Map> maps =creationSe ...
- node的经典事件监听
let fs = require('fs'); let Event = require('events'); let myEvent = new Event(); //注册一个订阅者 A myEven ...
- JavaScript中的Date对象在IOS中的“大坑”
在IOS5以上版本(不包含IOS5)中的Safari浏览器能正确解释出Javascript中的 new Date('2013-10-21') 的日期对象. 但是在IOS5版本里面的Safari解释ne ...
- 如何为TreeView定义三层模板并实现数据绑定
一直以来都想对TreeView定义多层模板,并实现数据绑定做一个总结,今天在这里做一个概述,我们常用的两层的TreeView绑定的话,我们首先修改TreeView的模板,这里我们使用的是级联的数据模板 ...
- Java多线程:用三个线程控制循环输出10次ABC
转载:http://www.cnblogs.com/gaopeng527/p/5257884.html 题目:有A,B,C三个线程, A线程输出A, B线程输出B, C线程输出C,要求, 同时启动三个 ...
- C-Lodop的https扩展版,火狐下添加例外
LODOP综合版里的c-lodop是标准版,没有https和广域网打印功能,如果使用了标准版,调试JS的时候会提示,,loaded over HTTPS,,,the content must be s ...
- map()实现zip()功能
c = (map(lambda x,y:(x,y),[1,2,3],["abd","def","ghi"]))print(list(c)) ...
- Django的ORM常用查询操作总结(Django编程-3)
Django的ORM常用查询操作总结(Django编程-3) 示例:一个Student model: class Student(models.Model): name=models.CharFiel ...
- windows7下GithubDesktop和极域学生客户端冲突导致无法正常打开解决方案
[出现问题] 很悲伤,今天GithubDesktop打开直接报错导致无法开启 报错如下 我的天呢,你敢相信连原因都不给我,但是这特么怎么可能难道我呢! 打开系统日志查看原因最终找到罪魁祸首!!! 计算 ...
- spring boot 系列之一:spring boot 入门
最近在学习spring boot,感觉确实很好用,开发环境搭建和部署确实省去了很多不必须要的重复劳动. 接下来就让我们一起来复习下. 一.什么是spring boot ? spring boot是干嘛 ...