传送门:洛谷

题目大意:设$$S(i)=\sum_{j=1}^ndis(i,j)^k$$,求$S(1),S(2),\ldots,S(n)$。

数据范围:$n\leq 50000,k\leq 150$


这道题,看见$k$次方和就直接上斯特林数。

$$S(x)=\sum_{i=0}^ki!S(k,i)\sum_{y=1}^nC_{dis(x,y)}^i$$

然后我们考虑求最后一项。

设$$up_{x,t}=\sum_{y\notin x}C_{dis(x,y)}^t,dn_{x,t}=\sum_{y\in x}C_{dis(x,y)}^t$$

我们先考虑$dn$。

$$dn_{x,t}=\sum_{(x,v)}\sum_{y\in v}C_{dis(v,y)+1}^t$$

$$=\sum_{(x,v)}\sum_{y\in v}(C_{dis(v,y)}^t+C_{dis(v,y)}^{t-1})$$

$$=\sum_{(x,v)}(dn_{v,t}+dn_{v,t-1})$$

然后考虑$up$

$$up_{x,t}=\sum_{v\notin fa}C_{dis(v,fa)+1}^t+\sum_{v\in fa}C_{dis(v,fa)+1}^t-\sum_{v\in x}C_{dis(v,x)+2}^t$$

$$=up_{fa,t}+up_{fa,t-1}+dn_{fa,t}+dn_{fa,t-1}-dn_{x,t}-2dn_{x,t-1}-dn_{x,t-2}$$

其中$up_{1,t}=0$

然后把式子直接输进去就可以了。

 #include<cstdio>
#define Rint register int
using namespace std;
const int N = , K = , mod = ;
int n, k, head[N], to[N << ], nxt[N << ], S[K][K], fac[K];
inline void add(int a, int b){
static int cnt = ;
to[++ cnt] = b; nxt[cnt] = head[a]; head[a] = cnt;
}
int dn[N][K], up[N][K];
inline void dfs1(int x, int f){
dn[x][] = ;
for(Rint i = head[x];i;i = nxt[i])
if(to[i] != f){
dfs1(to[i], x);
dn[x][] = (dn[x][] + dn[to[i]][]) % mod;
for(Rint t = ;t <= k;t ++)
dn[x][t] = (dn[to[i]][t] + dn[to[i]][t - ] + dn[x][t]) % mod;
}
}
inline void dfs2(int x, int f){
for(Rint i = head[x];i;i = nxt[i])
if(to[i] != f){
up[to[i]][] = (up[x][] + dn[x][] - dn[to[i]][] + mod) % mod;
up[to[i]][] = (up[x][] + up[x][] + dn[x][] + dn[x][] - dn[to[i]][] - * dn[to[i]][] + * mod) % mod;
for(Rint t = ;t <= k;t ++)
up[to[i]][t] = (up[x][t] + up[x][t - ] + dn[x][t] + dn[x][t - ] - dn[to[i]][t] - * dn[to[i]][t - ] - dn[to[i]][t - ] + * mod) % mod;
dfs2(to[i], x);
}
}
int main(){
scanf("%d%d", &n, &k);
S[][] = ;
for(Rint i = ;i <= k;i ++)
for(Rint j = ;j <= k;j ++)
S[i][j] = (S[i - ][j - ] + S[i - ][j] * j) % mod;
fac[] = ;
for(Rint i = ;i <= k;i ++) fac[i] = i * fac[i - ] % mod;
for(Rint i = ;i < n;i ++){
int a, b;
scanf("%d%d", &a, &b);
add(a, b); add(b, a);
}
dfs1(, ); dfs2(, );
for(Rint x = ;x <= n;x ++){
int ans = ;
for(Rint i = ;i <= k;i ++)
ans = (ans + fac[i] * S[k][i] % mod * (up[x][i] + dn[x][i]) % mod) % mod;
printf("%d\n", ans);
}
}

P4827 [国家集训队] Crash 的文明世界的更多相关文章

  1. 洛谷P4827 [国家集训队] Crash 的文明世界 [斯特林数,组合数,DP]

    传送门 思路 又见到这个\(k\)次方啦!按照套路,我们将它搞成斯特林数: \[ ans_x=\sum_{i=0}^k i!S(k,i)\sum_y {dis(x,y) \choose i} \] 前 ...

  2. P4827 [国家集训队] Crash 的文明世界(第二类斯特林数+树形dp)

    传送门 对于点\(u\),所求为\[\sum_{i=1}^ndis(i,u)^k\] 把后面那堆东西化成第二类斯特林数,有\[\sum_{i=1}^n\sum_{j=0}^kS(k,j)\times ...

  3. 洛谷 P4827 [国家集训队] Crash 的文明世界

    题目描述 ​ 给你一棵 n 个点的树,对于树上的每个节点 i,求 \(\sum_{j=1}^ndis(i,j)^k\).其中 \(dis(i,j)\) 为两点在树上的距离. 输入格式 ​ 第一行两个整 ...

  4. [国家集训队] Crash 的文明世界(第二类斯特林数)

    题目 [国家集训队] Crash 的文明世界 前置 斯特林数\(\Longrightarrow\)斯特林数及反演总结 做法 \[\begin{aligned} ans_x&=\sum\limi ...

  5. 国家集训队 Crash 的文明世界(第二类斯特林数+换根dp)

    题意 ​ 题目链接:https://www.luogu.org/problem/P4827 ​ 给定一棵 \(n\) 个节点的树和一个常数 \(k\) ,对于树上的每一个节点 \(i\) ,求出 \( ...

  6. [国家集训队] Crash的文明世界

    Description 给定一棵 \(n\) 个点的树,对于每个点 \(i\) 求 \(S(i)=\sum\limits_{j=1}^n \operatorname{dist(i,j)}^k\) .\ ...

  7. [国家集训队] Crash 的文明世界

    不错的树形$ DP$的题 可为什么我自带大常数啊$ cry$ 链接:here 题意:给定一棵$ n$个节点的树,边权为$ 1$,对于每个点$ x$求$ \sum\limits_{i=1}^n dist ...

  8. 解题:国家集训队 Crash 的文明世界

    题面 这种套着高次幂的统计问题一般都要用到第二类斯特林数和自然数幂的关系:$a^k=\sum\limits_{i=0}^{k}S_k^iC_a^i*i!$ 那么对于每个点$x$有: $ans_x=\s ...

  9. 【[国家集训队] Crash 的文明世界】

    先写一个五十分的思路吧 首先这道题有一个弱化版 [POI2008]STA-Station 相当于\(k=1\),于是就是一个非常简单的树形\(dp\)的\(up\ \ and\ \ down\)思想 ...

随机推荐

  1. EasyUI Form提交后json数据IE上需要下载(转)

    EasyUI Form提交后json数据IE上需要下载(转)   在使用EasyUI的form中的submit方法时,返回json在IE中变成提示下载的问题,代码如下: $('#fileForm'). ...

  2. Java知多少(49)throw:异常的抛出

    到目前为止,你只是获取了被Java运行时系统抛出的异常.然而,程序可以用throw语句抛出明确的异常.Throw语句的通常形式如下:    throw ThrowableInstance;这里,Thr ...

  3. Java知多少(51)finally

    当异常被抛出,通常方法的执行将作一个陡峭的非线性的转向.依赖于方法是怎样编码的,异常甚至可以导致方法过早返回.这在一些方法中是一个问题.例如,如果一个方法打开一个文件项并关闭,然后退出,你不希望关闭文 ...

  4. spring mvc中获取请求URL

    String baseUrl=request.getScheme()+"://"+request.getServerName()+":"+request.get ...

  5. 基于【CentOS-7+ Ambari 2.7.0 + HDP 3.0】搭建HAWQ数据仓库 —— MariaDB 安装配置

    一.安装并使用MariaDB作为Ambari.Hive.Hue的存储数据库. yum install mariadb-server mariadb 启动.查看状态,检查mariadb是否成功安装 sy ...

  6. MTK 修改默认时区

    首先介绍应用程序修改 : AlarmManager mAlarmManager = (AlarmManager) getSystemService(Context.ALARM_SERVICE); mA ...

  7. CentOS6.x 升级到 CentOS7.x(测试)

    博文来源:http://leyewen.blog.163.com/   官方升级教程:http://wiki.centos.org/TipsAndTricks/CentOSUpgradeTool   ...

  8. 什么是web标准、可用性、可访问性

    前言:大家不难发现,只要是招聘UED相关的岗位,如前端开发工程师.交互设计师.用户研究员甚至视觉设计师,一般都对web标准.可用性和可访问性的理解有要求.那么到底什么是web标准.可用性.可访问性呢? ...

  9. Linux(Ubuntu)使用 sudo apt-get install 命令安装软件的目录在哪?(已解决)

    Linux(Ubuntu)使用   sudo apt-get install  命令安装软件的目录在哪? bin文件路径: /usr/bin 库文件路径: /usr/lib/  其它的图标啊什么的路径 ...

  10. C# Timer 定时器

    Timer简单介绍 构造函数 通过ILSpy反编译可以看到Timer的内部代码. Timer 的默认构造函数里赋了初值,所以当我们初始化Timer的时候,已经有了默认值. Timer 的带参数的构造函 ...