AVL(二叉平衡树) 的实现
一颗AVL树是其每个节点的左子树与右子树的高度最多差1的二叉查找树。
在插入过程中,利用旋转的办法保持这个性质。
共分四种情形:
1、 树T的左孩子的左子树上新插入节点导致破坏平衡性:
如下图左边所示,因为在子树X中新加入一个节点,导致k2处的平衡性被破坏
通过如右边所示的旋转,可以使得整棵树重新变得平衡。

2、 树T的右孩子的右子树上新插入节点导致破坏平衡性
这种情形跟上面那种情形是对称的。

3、树T的左孩子的右子树上新插入节点导致破坏平衡性
此时照搬情形1的旋转方法已经不能奏效了。

考虑将Y这部分散开来看:

可经由两次旋转解决问题:

可以发现,经过第一次旋转之后,问题已经变成了情形1,可再进行一次单旋转解决:

4、树T的右孩子的左子树上新插入结点,这时与情形3完全对称,可类似解决。
以下是实现部分。
仅实现插入操作,删除一般是惰性的。还有一点假设相同元素不出现在树结构中。
avl.h
#pragma once
using Elemtype = int;
struct AvlNode;
typedef struct AvlNode *Position;
typedef struct AvlNode *AvlTree; //AvlTree MakeEmpty(AvlTree T);
//Position Find(Elemtype X, AvlTree T);
//Position FindMin(AvlTree T);
//Position FindMax(AvlTree T); AvlTree Insert(Elemtype X, AvlTree T);
//AvlTree Delete(Elemtype X, AvlTree T); //Elemtype Retrieve(Position P);
avl.cpp
#include "avl.h"
#include<cstdio>
#include<cstdlib>
#include<cassert>
#include<algorithm>
struct AvlNode{
Elemtype Element;
AvlTree Left;
AvlTree Right;
int Height;
}; static int Height(Position p){
if (p == nullptr)
return -1;
else
return p->Height;
}
static Position SingleRotateWithLeft(Position K2){
Position K1;
K1 = K2->Left;
K2->Left = K1->Right;
K1->Right = K2; K2->Height = std::max(Height(K2->Left), Height(K2->Right)) + 1;
K1->Height = std::max(Height(K1->Left), Height(K1->Right)) + 1; return K1; /*New root*/
}
static Position SingleRotateWithRight(Position K2){
Position K1;
K1 = K2->Right;
K2->Right = K1->Left;
K1->Left = K2; K2->Height = std::max(Height(K2->Left), Height(K2->Right)) + 1;
K1->Height = std::max(Height(K1->Left), Height(K1->Right)) + 1; return K1; /*New root*/
}
static Position DoubleRotateWithLeft(Position K3){
K3->Left = SingleRotateWithRight(K3->Left);
return SingleRotateWithLeft(K3);
}
static Position DoubleRotateWithRight(Position K3){
K3->Right = SingleRotateWithLeft(K3->Right);
return SingleRotateWithRight(K3);
}
AvlTree Insert(Elemtype X, AvlTree T){
if (T == nullptr){
/*Create and return a one-node tree*/
T = (AvlTree)malloc(sizeof(struct AvlNode));
assert(T != nullptr, "Out of Space");
T->Element = X; T->Height = 0;
T->Left = T->Right = nullptr;
}
else if (X < T->Element){
T->Left = Insert(X, T->Left);
if (Height(T->Left) - Height(T->Right) == 2){
if (X < T->Left->Element){
T = SingleRotateWithLeft(T);
}
else{
T = DoubleRotateWithLeft(T);
}
}
}
else if (X > T->Element){
T->Right = Insert(X, T->Right);
if (Height(T->Right) - Height(T->Left) == 2){
if (X > T->Right->Element){
T = SingleRotateWithRight(T);
}
else{
T = DoubleRotateWithRight(T);
}
}
}
/*Else X is in the tree already; we'll do nothing */
T->Height = std::max(Height(T->Left), Height(T->Right)) + 1;
return T;
}
AVL(二叉平衡树) 的实现的更多相关文章
- 数据结构与算法问题 AVL二叉平衡树
AVL树是带有平衡条件的二叉查找树. 这个平衡条件必须保持,并且它必须保证树的深度是O(logN). 一棵AVL树是其每一个节点的左子树和右子树的高度最多差1的二叉查找树. (空树的高度定义为-1). ...
- java项目---用java实现二叉平衡树(AVL树)并打印结果(详)(3星)
package Demo; public class AVLtree { private Node root; //首先定义根节点 private static class Node{ //定义Nod ...
- Algorithms: 二叉平衡树(AVL)
二叉平衡树(AVL): 这个数据结构我在三月份学数据结构结构的时候遇到过.但当时没调通.也就没写下来.前几天要用的时候给调好了!详细AVL是什么,我就不介绍了,维基百科都有. 后面两月又要忙了. ...
- AVL树(二叉平衡树)详解与实现
AVL树概念 前面学习二叉查找树和二叉树的各种遍历,但是其查找效率不稳定(斜树),而二叉平衡树的用途更多.查找相比稳定很多.(欢迎关注数据结构专栏) AVL树是带有平衡条件的二叉查找树.这个平衡条件必 ...
- 二叉平衡树AVL的插入与删除(java实现)
二叉平衡树 全图基础解释参考链接:http://btechsmartclass.com/data_structures/avl-trees.html 二叉平衡树:https://www.cnblogs ...
- 从零开始学算法---二叉平衡树(AVL树)
先来了解一些基本概念: 1)什么是二叉平衡树? 之前我们了解过二叉查找树,我们说通常来讲, 对于一棵有n个节点的二叉查找树,查询一个节点的时间复杂度为log以2为底的N的对数. 通常来讲是这样的, 但 ...
- 判断一颗二叉树是否为二叉平衡树 python 代码
输入一颗二叉树,判断这棵树是否为二叉平衡树.首先来看一下二叉平衡树的概念:它是一 棵空树或它的左右两个子树的高度差的绝对值不超过1,并且左右两个子树都是一棵平衡二叉树.因此判断一颗二叉平衡树的关键在于 ...
- 算法题 19 二叉平衡树检查 牛客网 CC150
算法题 19 二叉平衡树检查 牛客网 CC150 实现一个函数,检查二叉树是否平衡,平衡的定义如下,对于树中的任意一个结点,其两颗子树的高度差不超过1. 给定指向树根结点的指针TreeNode* ro ...
- 各种查找算法的选用分析(顺序查找、二分查找、二叉平衡树、B树、红黑树、B+树)
目录 顺序查找 二分查找 二叉平衡树 B树 红黑树 B+树 参考文档 顺序查找 给你一组数,最自然的效率最低的查找算法是顺序查找--从头到尾挨个挨个遍历查找,它的时间复杂度为O(n). 二分查找 而另 ...
随机推荐
- SOCK_RAW编程
TCP(SOCK_STREAM)和UDP套接口(SOCK_DGRAM)可以满足大部分需求,但要获取底层协议内容就需要原始套接字.相比前两者,SOCK_RAW具有如下优点: 1)使用原始套接字可以读写I ...
- "/usr/local/openresty/nginx/html/index.html" is forbidden (13: Permission denied), client: 10.0.4.118, server: localhost, request: "GET / HTTP/1.1"
openrestry 安装之后 报"/usr/local/openresty/nginx/html/index.html" is forbidden (13: Permission ...
- Visual Studio 2017 RC使用初体验
.NET Core新式,高效,特别适合用于大规模的Web应用:而传统的.NET Framework则非常适合用于开发Windows桌面应用程序. 一 安装 请下载Visual Studio 2017 ...
- 编写Nginx启停服务脚本
在/etc/init.d/目录下创建脚本 vim /etc/init.d/nginx 编写脚本内容:(其中下面2行需要根据情况自行修改) nginxd=/opt/nginx/sbin/nginx ng ...
- Deep3d研究
如何使用CNN将视频从2D到3D进行自动转换 http://www.sohu.com/a/128924237_642762 从2D图片生成3D模型(3D-GAN) http://blog.topspe ...
- .NET学习笔记(1)
把 DataSet 绑定到 Repeater 控件 Repeater 控件用于显示重复的项目列表,这些项目被限制在该控件.Repeater 控件可被绑定到数据库表.XML 文件或者其他项目列表. 获取 ...
- CSS径向渐变radial-gradient
可以做一些效果,不错! 网址:http://www.cnblogs.com/xiaohuochai/p/5383285.html
- Spring MVC学习-----------springMVC-mvc.xml
springMVC-mvc.xml 配置文件片段解说 (未使用默认配置文件名称) <?xml version="1.0" encoding="UTF-8" ...
- 基础-Eclipse 教程
1.Eclipse 是一个开放源代码的.基于 Java 的可扩展开发平台.2.下载地址为: https://www.eclipse.org/downloads/.3.Eclipse 修改字符集 : W ...
- ubuntu16.04主题美化和软件推荐(转载)
从这里转载!转载!转载! http://blog.csdn.net/terence1212/article/details/52270210