【BZOJ4382】[POI2015]Podział naszyjnika

Description

长度为n的一串项链,每颗珠子是k种颜色之一。 第i颗与第i-1,i+1颗珠子相邻,第n颗与第1颗也相邻。
切两刀,把项链断成两条链。要求每种颜色的珠子只能出现在其中一条链中。
求方案数量(保证至少存在一种),以及切成的两段长度之差绝对值的最小值。

Input

第一行n,k(2<=k<=n<=1000000)。颜色从1到k标号。
接下来n个数,按顺序表示每颗珠子的颜色。(保证k种颜色各出现至少一次)。

Output

一行两个整数:方案数量,和长度差的最小值

Sample Input

9 5
2 5 3 2 2 4 1 1 3

Sample Output

4 3

HINT

四种方法中较短的一条分别是(5),(4),(1,1),(4,1,1)。相差最小值6-3=3。

题解:hash那么巧妙的做法我怎么想得到啊~我只会无脑的数据结构。

防止重复,我们不倍长原序列,然后枚举一条切割线r,只考虑另一条切割线l在这条左边的情况。那么对于每种颜色,它只能有一下两种存在方式。

1.2.

对于第一种情况,我们可以对每个点维护上一个与它颜色相同的位置pre,然后只需要满足pre<=l即可。可以用堆维护pre的最大值。

对于第二种情况,我们已经枚举到了这个颜色最右面的点,现在只需要将这个颜色最左端和最右端中间的点全部删除。用并查集维护,并用树状数组统计区间中已经被删除的点的个数即可。

于是方案数量我们很容易就能求出来了。那么长度差的最小值怎么办?我们对于右端点r,肯定是希望找到离r-n/2最近的合法的l。可以用并查集找到每个点左面和右面第一个没被删除的点,判断一下就行。

#include <cstdio>
#include <cstring>
#include <iostream>
#include <vector>
#include <queue>
using namespace std;
const int maxn=1000010;
typedef long long ll;
int n,m,ans;
ll sum;
int v[maxn],pos[maxn],f[maxn],s[maxn],siz[maxn];
vector<int> p[maxn];
struct heap
{
priority_queue<int> qa,qb;
inline void push(int x) {qa.push(x);}
inline void erase(int x) {qb.push(x);}
inline int top()
{
while(qb.size()&&qa.top()==qb.top()) qa.pop(),qb.pop();
return qa.size()?qa.top():0;
}
}q;
inline int rd()
{
int ret=0,f=1; char gc=getchar();
while(gc<'0'||gc>'9') {if(gc=='-') f=-f; gc=getchar();}
while(gc>='0'&&gc<='9') ret=ret*10+gc-'0',gc=getchar();
return ret*f;
}
int find(int x)
{
return (f[x]==x)?x:(f[x]=find(f[x]));
}
inline int abs(int x)
{
return x>0?x:-x;
}
inline void updata(int x)
{
for(int i=x;i<=n;i+=i&-i) s[i]++;
}
inline int query(int x)
{
if(x==-1) return 0;
int i,ret=0;
for(i=x;i;i-=i&-i) ret+=s[i];
return ret;
}
int main()
{
n=rd(),m=rd();
int i,j,k;
for(i=1;i<=n;i++)
{
v[i]=rd(),p[v[i]].push_back(i),pos[i]=p[v[i]].size()-1,f[i]=i,siz[i]=1;
}
f[0]=1,f[n+1]=n+1,siz[n+1]=1;
ans=n;
for(i=1;i<n;i++)
{
if(pos[i]) q.erase(p[v[i]][pos[i]-1]);
if(pos[i]==(int)p[v[i]].size()-1)
{
for(j=find(p[v[i]][0]);j<i;j=f[j]) updata(j),siz[find(j+1)]+=siz[j],f[j]=f[j+1];
}
else q.push(i);
k=q.top();
sum+=i-k-(query(i-1)-query(k-1));
j=find(max(k,i-n/2));
if(j<i) ans=min(ans,abs(n-2*(i-j)));
j-=siz[j];
if(j>=k) ans=min(ans,abs(n-2*(i-j)));
}
printf("%lld %d",sum,ans);
return 0;
}

【BZOJ4382】[POI2015]Podział naszyjnika 堆+并查集+树状数组的更多相关文章

  1. BZOJ-3211花神游历各国 并查集+树状数组

    一开始想写线段树区间开方,简单暴力下,但觉得变成复杂度稍高,懒惰了,编了个复杂度简单的 3211: 花神游历各国 Time Limit: 5 Sec Memory Limit: 128 MB Subm ...

  2. BZOJ3211 花神游历各国 并查集 树状数组

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ3211 题意概括 有n个数形成一个序列. m次操作. 有两种,分别是: 1. 区间开根(取整) 2. ...

  3. hdu 6200 mustedge mustedge(并查集+树状数组 或者 LCT 缩点)

    hdu 6200 mustedge mustedge(并查集+树状数组 或者 LCT 缩点) 题意: 给一张无向连通图,有两种操作 1 u v 加一条边(u,v) 2 u v 计算u到v路径上桥的个数 ...

  4. 【bzoj4869】[Shoi2017]相逢是问候 扩展欧拉定理+并查集+树状数组

    题目描述 Informatik verbindet dich und mich. 信息将你我连结. B君希望以维护一个长度为n的数组,这个数组的下标为从1到n的正整数.一共有m个操作,可以分为两种:0 ...

  5. HDU 5458 Stability(双连通分量+LCA+并查集+树状数组)(2015 ACM/ICPC Asia Regional Shenyang Online)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5458 Problem Description Given an undirected connecte ...

  6. la4730(并查集+树状数组)

    https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemid=8&category=30& ...

  7. 【BZOJ3211】花神游历各国 并查集+树状数组

    [BZOJ3211]花神游历各国 Description Input Output 每次x=1时,每行一个整数,表示这次旅行的开心度 Sample Input 41 100 5 551 1 22 1 ...

  8. HDU 4750 Count The Pairs ★(图+并查集+树状数组)

    题意 给定一个无向图(N<=10000, E<=500000),定义f[s,t]表示从s到t经过的每条路径中最长的边的最小值.Q个询问,每个询问一个t,问有多少对(s, t)使得f[s, ...

  9. Hdu 5458 Stability (LCA + 并查集 + 树状数组 + 缩点)

    题目链接: Hdu 5458 Stability 题目描述: 给出一个还有环和重边的图G,对图G有两种操作: 1 u v, 删除u与v之间的一天边 (保证这个边一定存在) 2 u v, 查询u到v的路 ...

随机推荐

  1. Git-在一个电脑上同时使用两个Git的账号

    前言 又需要登录公司的账号,又想在电脑上使用自己的账号. 实现 首先是git config方面的设置,要取消掉原本对于git账号的全局设置. git config --global --unset u ...

  2. Android面试常问到的知识点

    一.算法,数据结构 1.排序算法 2.查找算法 3.二叉树 4.广度,深度算法: 二.java基础 1.集合Collection,List,Map等常用方法,特点,关系: 2.线程的同步,中断方式有几 ...

  3. openstack neutron L3 HA

    作者:Liping Mao  发表于:2014-08-20 版权声明:能够随意转载,转载时请务必以超链接形式标明文章原始出处和作者信息及本版权声明 近期Assaf Muller写了一篇关于Neutro ...

  4. Win7下更改iTunes备份路径最便捷的方法

    ① 先删除C:\Users\你的用户名\AppData\Roaming\Apple Computer里的 MobileSync文件夹(首次安装iTunes要先运行一次itunes,才有这个文件夹,如果 ...

  5. Mobicents记录1:如何搭建和运行mobicents3.0环境(基于jboss7.2)

    网上能查到的mobicents的资料都是基于比较老的版本,而官网现在已经更新到3.0的版本,很多资料都已经无效,所以把自己的摸索过程记录下来,以便后来者能少走点弯路,快速上手. 闲言少叙,开始正文.. ...

  6. 【JavaScript】一个同步于本地时间的动态时间

    这样例很easy.了解JavaScript之后就是几行的代码便可以完毕的事情. 可是对于一些未接触过JavaScript的人来说,差点儿非常大project的样子.然后在网上苦苦寻觅代码,之后在茫茫的 ...

  7. vim跳出括号的方法

    https://github.com/Raimondi/delimitMate delimitMate是一个自动括号补全的好插件,但是,如果没有一个好的跳出括号办法,好想由打了折扣. 我目前找到最适合 ...

  8. C#多线程方法同步

    using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.T ...

  9. C++语言基础(24)-四种类型转换运算符(static_cast、dynamic_cast、const_cast和reinterpret_cast)

    一.static_cast static_cast 只能用于良性转换,这样的转换风险较低,一般不会发生什么意外,如: #include <iostream> #include <cs ...

  10. Xcode 10 关于 CocoaPods 安装失败的问题RuntimeError

    xcode 10的情况下执行pod install报错了 RuntimeError - [!] Xcodeproj doesn't know about the following attribute ...