题意:让你求一些数在XOR下的带权极大无关组。

带权极大无关组可以用贪心,将这些数按权值从大到小排序之后,依次检验其与之前的数是否全都线性无关。可以用线性基来搞。

可以用拟阵严格证明,不过也可以脑补一下……

#include<cstdio>
#include<algorithm>
using namespace std;
typedef long long ll;
ll d[64],p[64];
int cnt;//简化线性基的大小
bool Insert(ll val){//尝试插入线性基,返回是否插入成功
for(int i=62;i>=0;--i){
if(val&(1ll<<i)){
if(!d[i]){
d[i]=val;
break;
}
val^=d[i];
}
}
return val>0;
}
ll QueryMax(){
ll res=0;
for(int i=62;i>=0;--i){
if((res^d[i])>res){
res^=d[i];
}
}
return res;
}
ll QueryMin(){
for(int i=0;i<=62;++i){
if(d[i]){
return d[i];
}
}
return 0;
}
void Rebuild(){//化为简化线性基
for(int i=62;i>=0;--i){
for(int j=i-1;j>=0;--j){
if(d[i]&(1ll<<j)){
d[i]^=d[j];
}
}
}
for(int i=0;i<=60;++i){
if(d[i]){
p[cnt++]=d[i];
}
}
}
ll Kth(ll K){
ll res=0;
if(K>=(1ll<<cnt)){
return -1ll;
}
for(int i=60;i>=0;--i){
if(K&(1ll<<i)){
res^=p[i];
}
}
return res;
}
int n;
struct Point{
ll x,y;
Point(const ll &x,const ll &y){
this->x=x;
this->y=y;
}
Point(){}
};
Point a[1005];
bool cmp(const Point &a,const Point &b){
return a.y>b.y;
}
int main(){
// freopen("bzoj2460.in","r",stdin);
scanf("%d",&n);
for(int i=1;i<=n;++i){
scanf("%lld%lld",&a[i].x,&a[i].y);
}
sort(a+1,a+n+1,cmp);
ll ans=0;
for(int i=1;i<=n;++i){
if(Insert(a[i].x)){
ans+=a[i].y;
}
}
printf("%lld\n",ans);
return 0;
}

【贪心】【线性基】bzoj2460 [BeiJing2011]元素的更多相关文章

  1. BZOJ 2460:元素(贪心+线性基)

    题目链接 题意 中文题意 思路 线性基学习 题目要求选价值最大的并且这些数异或后不为0,可以考虑线性基的性质:线性基的任意一个非空集合XOR之和不会为0.那么就可以贪心地对价值从大到小排序,加入线性基 ...

  2. BZOJ2460 [BeiJing2011]元素

    Description 相传,在远古时期,位于西方大陆的 Magic Land 上,人们已经掌握了用魔法矿石炼制法杖的技术.那时人们就认识到,一个法杖的法力取决于使用的矿石. 一般地,矿石越多则法力越 ...

  3. BZOJ2460 Beijing2011元素(线性基+贪心)

    按价值从大到小考虑每个元素,维护一个线性基,如果向其中加入该元素的编号仍然构成线性基,则将其加入. 不会证明.当做线性基的一个性质吧. #include<iostream> #includ ...

  4. [bzoj2460] [BeiJing2011]元素(线性基+贪心)

    题目大意: 有一些矿石,每个矿石有一个a和一个b值,要求选出一些矿石,b的和最大且不存在某个矿石子集它们的a的异或和为0. 解题关键:对魔力进行由大到小排序,依次加入线性基,统计即可. #includ ...

  5. [BeiJing2011]元素[贪心+线性基]

    2460: [BeiJing2011]元素 Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 1245  Solved: 652[Submit][Stat ...

  6. BZOJ2460 [BeiJing2011]元素 【线性基】

    2460: [BeiJing2011]元素 Time Limit: 20 Sec  Memory Limit: 128 MB Submit: 1675  Solved: 869 [Submit][St ...

  7. BZOJ2460:[BJWC2011]元素(贪心,线性基)

    Description 相传,在远古时期,位于西方大陆的 Magic Land 上,人们已经掌握了用魔法矿石炼制法杖的技术.那时人们就认识到,一个法杖的法力取决于使用的矿石. 一般地,矿石越多则法力越 ...

  8. 【题解】 bzoj2460: [BeiJing2011]元素 (线性基)

    bzoj2460,戳我戳我 Solution: 线性基板子,没啥好说的,注意long long 就好了 Code: //It is coded by Ning_Mew on 5.29 #include ...

  9. BZOJ - 2460 :元素 (贪心&线性基)

    相传,在远古时期,位于西方大陆的 Magic Land 上,人们已经掌握了用魔法矿石炼制法杖的技术.那时人们就认识到,一个法杖的法力取决于使用的矿石.一般地,矿石越多则法力越强,但物极必反:有时,人们 ...

随机推荐

  1. Git彻底删除历史提交记录的方法

    有时候我们可能会遇到git提交错误的情况,比如提交了敏感的信息或者提交了错误的版本.这个时候我们想将提交到代码库的记录删除,我们要怎么做呢? 首先,我们需要找到我们需要回滚到的提交点的hash,可以使 ...

  2. bzoj 1093 缩点+DP

    首先比较明显的是如果存在一个半连通子图,我们将其中的环缩成点,那么该图仍为半连通子图,这样我们就可以先将整张图缩点,重新构图,新图为拓扑图,记录每个新的点表示的强连通分量中点的个数num[i],那么我 ...

  3. sql server查看创建表的代码,表定义

    1.查看建表语句在“对象资源管理器”中找到要导出的表,选中该表并单击右键,“编写表脚本为(S)”/“CREATE到(C)”/“新查询编辑器窗口”即可查看该表的建表语句.2.导出建表语句在“对象资源管理 ...

  4. C基础 一个可以改变linux的函数getch

    引言  -  getch简述 引用老的TC版本getch说明. (文章介绍点有点窄,  应用点都是一些恐龙游戏时代的开发细节) #include <conio.h> /* * 立即从客户端 ...

  5. 将MongoDB安装成为Windows服务

    使用以下命令将MongoDB安装成为Windows服务.笔者的MongoDB目录为D:\Program Files\mongodb 切换到D:\Program Files\mongodb\bin> ...

  6. tomcat8特性

    作者:Eilen,转载需注明.博客主页:http://www.cnblogs.com/Eilen/ 一.Apache Tomcat 8介绍 Apache Tomcat 8RC1版于前几日发布.它 经过 ...

  7. MYSQL中INET_ATON()函数

    例如我们现在要在一个表中查出 ip 在 192.168.1.3 到 192.168.1.20 之间的 ip 地址,我们首先想到的就是通过字符串的比较来获取查找结果,但是如果我们通过这种方式来查找,结果 ...

  8. [Jsoi2011]柠檬

    Description Flute 很喜欢柠檬.它准备了一串用树枝串起来的贝壳,打算用一种魔法把贝壳变成柠檬.贝壳一共有 N (1 ≤ N ≤ 100,000) 只,按顺序串在树枝上.为了方便,我们从 ...

  9. www.verycd.com

    #encoding=utf-8 import urllib import urllib2 postdate = urllib.urlencode({'continueURL':'http://www. ...

  10. conso.log占位符

    %d占位符表示number %s占位符表示string %f占位符表示浮点数 %o占位符表示对象