P4018 Roy&October之取石子

题目背景

Roy和October两人在玩一个取石子的游戏。

题目描述

游戏规则是这样的:共有n个石子,两人每次都只能取p^kpk个(p为质数,k为自然数,且p^kpk小于等于当前剩余石子数),谁取走最后一个石子,谁就赢了。

现在October先取,问她有没有必胜策略。

若她有必胜策略,输出一行"October wins!";否则输出一行"Roy wins!"。

输入输出格式

输入格式:

第一行一个正整数T,表示测试点组数。

第2行~第(T+1)行,一行一个正整数n,表示石子个数。

输出格式:

T行,每行分别为"October wins!"或"Roy wins!"。

输入输出样例

输入样例#1: 复制

3
4
9
14
输出样例#1: 复制

October wins!
October wins!
October wins!

说明

对于30%的数据,1<=n<=30;

对于60%的数据,1<=n<=1,000,000;

对于100%的数据,1<=n<=50,000,000,1<=T<=100,000。

(改编题)

乍一看像是博弈

其实数学归纳法也可以完成这个题目

我们来看下面的表格

棋子的个数 1 2 3 4 5 6 7 8 9
第一个人取得个数 1^1 2^1 3^1 2^2 5^1 2^2 1^1+2^1 2^1+2^1 3^1+2^1
第二个人取得个数 0 0 0 0 0 2^1 2^2 2^2 2^2

当棋子的个数小于等于6的时候,我们可以看到在1~5的时候全是第一个人赢,当n=6是第二个人赢,当7~11内我们可以将数拆成1~5内的一个数想让第一个人拿,然后余出个6,这样第二个人就不可能一次拿完,只能再让第一个人拿一次,这样第一个人必胜,当12时,第二个人赢、、、以此类推,我们可以发现,当n为6的倍数的时候,第二个人赢,其余情况均为第一个人赢

#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
int T,n;
int read()
{
    ,f=; char ch=getchar();
    ;ch=getchar();}
    +ch-',ch=getchar();
    return x*f;
}
int main()
{
    T=read();
    while(T--)
    {
        n=read();
        ==) printf("Roy wins!\n");
        else printf("October wins!\n");
    }
    ;
}

洛谷——P4018 Roy&October之取石子的更多相关文章

  1. 洛谷 P4018 Roy&October之取石子

    洛谷 P4018 Roy&October之取石子 题目背景 Roy和October两人在玩一个取石子的游戏. 题目描述 游戏规则是这样的:共有n个石子,两人每次都只能取 p^kpk 个(p为质 ...

  2. 洛谷P4018 Roy&October之取石子

    题目背景 \(Roy\)和\(October\)两人在玩一个取石子的游戏. 题目描述 游戏规则是这样的:共有\(n\)个石子,两人每次都只能取\(p^k\)个(\(p\)为质数,\(k\)为自然数,且 ...

  3. 洛谷P4018 Roy&October之取石子 题解 博弈论

    题目链接:https://www.luogu.org/problem/P4018 首先碰到这道题目还是没有思路,于是寻思还是枚举找一找规律. 然后写了一下代码: #include <bits/s ...

  4. 洛谷P4860 Roy&October之取石子II 题解 博弈论

    题目链接:https://www.luogu.org/problem/P4860 和<P4018 Roy&October之取石子>一样的推导思路,去找循环节. 可以发现:只要不能被 ...

  5. P4018 Roy&October之取石子

    题目背景 Roy和October两人在玩一个取石子的游戏. 题目描述 游戏规则是这样的:共有n个石子,两人每次都只能取 p^kpk 个(p为质数,k为自然数,且 p^kpk 小于等于当前剩余石子数), ...

  6. luogu P4018 Roy&October之取石子(博弈论)

    题意 题解 如果n是6的倍数,先手必败,否则先手必胜. 因为6*x一定不是pk 所以取得话会变成6*y+a的形式a=1,2,3,4,5: 然后a一定为质数.我们把a取完就又成为了6*x的形式. 又因为 ...

  7. 洛谷 Roy&October之取石子

    题目背景 Roy和October两人在玩一个取石子的游戏. 题目描述 游戏规则是这样的:共有n个石子,两人每次都只能取pk 个(p为质数,k为自然数,且pk小于等于当前剩余石子数),谁取走最后一个石子 ...

  8. [luogu4018][Roy&October之取石子]

    题目链接 思路 这个题思路挺巧妙的. 情况一: 首先如果这堆石子的数量是1~5,那么肯定是先手赢.因为先手可以直接拿走这些石子.如果石子数量恰好是6,那么肯定是后手赢.因为先手无论怎样拿也无法直接拿走 ...

  9. [luogu4860][Roy&October之取石子II]

    题目链接 思路 这个题和上个题类似,仔细推一下就知道这个题是判断是否是4的倍数 代码 #include<cstdio> #include<iostream> #define f ...

随机推荐

  1. LightOJ 1028 - Trailing Zeroes (I) 质因数分解/排列组合

    题意:10000组数据 问一个数n[1,1e12] 在k进制下有末尾0的k的个数. 思路:题意很明显,就是求n的因子个数,本来想直接预处理欧拉函数,然后拿它减n就行了.但注意是1e12次方法不可行.而 ...

  2. iOS 隐藏/显示导航栏

    一.隐藏导航栏 [self.navigationController.navigationBar setBackgroundImage:[UIImage new] forBarMetrics:UIBa ...

  3. 快速搭建rabbitmq单节点并配置使用

    安装erlang环境 wget http://erlang.org/download/otp_src_20.3.tar.gz tar xf otp_src_20.3.tar.gz && ...

  4. 【BZOJ1038】【ZJOI2008】瞭望塔 [模拟退火]

    瞭望塔 Time Limit: 10 Sec  Memory Limit: 162 MB[Submit][Status][Discuss] Description 致力于建设全国示范和谐小村庄的H村村 ...

  5. bzoj 1878: [SDOI2009]HH的项链 ——树状数组+ 差分

    Description HH有一串由各种漂亮的贝壳组成的项链.HH相信不同的贝壳会带来好运,所以每次散步 完后,他都会随意取出一 段贝壳,思考它们所表达的含义.HH不断地收集新的贝壳,因此他的项链变得 ...

  6. 【NOIP】普及组2011 表达式的值

    [算法]动态规划+后缀表达式 [题解] 先把算式转为后缀表达式后进行DP 令f[s][0]表示使表达式答案为0的方案数 f[s][1]表示使表达式答案为1的方案数 (加法) f[a+b][1]=f[a ...

  7. 2016-2017 2 20155335《java程序设计》第四周总结

    #  20155335    <Java程序设计>第四周学习总结 ##  教材学习内容总结 继承,在本职上是特殊到一般的关系,即is—a关系,子类继承父类,表明子类是一种特殊的父类,并且具 ...

  8. Mac 上真机调试cocos2d-x-3.16的test程序

    文章比较长,一个算是新手又不是新手的程序员的解决过程. 一 xcode中打开项目 首先,下载完成cocos2d-x-3.16之后,解压,然后在根目录build目录下双击cocos2d_tests.xc ...

  9. Spring理论基础-控制反转和依赖注入

    第一次了解到控制反转(Inversion of Control)这个概念,是在学习Spring框架的时候.IOC和AOP作为Spring的两大特征,自然是要去好好学学的.而依赖注入(Dependenc ...

  10. 变量对象vs活动对象

    这是我见过描述的最为详尽的关于变量对象.活动对象以及闭包的解析,来自知乎,感谢答主: 作者:闭家锁链接:https://www.zhihu.com/question/36393048/answer/7 ...