P3909 异或之积

题目描述

对于A_1,A_2,A_3,\cdots,A_NA1​,A2​,A3​,⋯,AN​,求

(6\times \sum_{i=1}^N\sum_{j=i+1}^N\sum_{k=j+1}^N A_i\times A_j\times A_k)\ mod\ (10^9+7)(6×∑i=1N​∑j=i+1N​∑k=j+1N​Ai​×Aj​×Ak​) mod (109+7)

的值。

输入输出格式

输入格式:

第1 行,1 个整数NN。

第2 行,NN个整数A_1,A_2,A_3,\cdots,A_NA1​,A2​,A3​,⋯,AN​.

输出格式:

1 个整数,表示所求的值。

输入输出样例

输入样例#1: 复制

3
1 2 3
输出样例#1: 复制

36

说明

• 对于30% 的数据,3 \le N \le 5003≤N≤500;

• 对于60% 的数据,3 \le N \le 50003≤N≤5000;

• 对于100% 的数据,3 \le N \le 10^6,0 \le A_i \le 10^93≤N≤106,0≤Ai​≤109。

将上面给出的式子展开,然后代入数以后找规律,提取公因式加上前缀和处理,然后就好了

#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define N 1000100
#define LL long long
#define mod 1000000007
using namespace std;
LL n,a[N],s1[N],s2[N],ans;
LL read()
{
    LL x=,f=; char ch=getchar();
    ;ch=getchar();}
    +ch-',ch=getchar();
    return  x*f;
}
int main()
{
    n=read();
    ;i<=n;i++) a[i]=read();
    ;i--)
     s1[i]=(s1[i+]+a[i])%mod;
    ;i--)
     s2[i]=(s2[i+]+a[i]*s1[i+])%mod;
    ;i<=n;i++)
     ans=(ans+a[i]*s2[i+]%mod);
    ans=*ans%mod;
    printf("%lld",ans);
    ;
}

洛谷——P3909 异或之积的更多相关文章

  1. 洛谷 P3909 异或之积 题解

    原题链接 本人看了其它解法,发现本人的解法还是 首创 ! 而且我的解法好像和 \(\times 6\) 没什么关系 -- (如果没 \(\times 6\),我没还不用算逆元) 别人的思路呢,大都是从 ...

  2. P3909 异或之积

    P3909 异或之积 为什么叫做异或之积? 答曰:只要不关乎Alice和Bob就行 做完这道水题,感觉自己弱爆了. 一开始就要考虑暴力\(O(n^3)\)的优化. 然后就注意到了题目中的\(6\)为什 ...

  3. 洛谷 P3908 异或之和

    洛谷 P3908 异或之和 题目描述 求1⨁2⨁⋯⨁N 的值. A⨁B 即 AA, B 按位异或. 输入输出格式 输入格式: 1 个整数 N . 输出格式: 1 个整数,表示所求的值. 输入输出样例 ...

  4. 【洛谷P3909】异或之积

    题目大意:给定一个 N 个数字组成的序列,求 \[ \left(6 \times \sum_{i=1}^{N} \sum_{j=i+1}^{N} \sum_{k=j+1}^{N} A_{i} \tim ...

  5. 洛谷P3760异或和

    传送门啦 传送门啦 一般这种位运算的题都要把每一位拆开来看,因为位运算每个位的结果这和这一位的数有关. 这样我们用s[i]表示a的前缀和,即 $ a[1]+a[2]+....a[i] $ ,然后我们从 ...

  6. 洛谷——P3908 异或之和

    P3908 异或之和 题目描述 求1 \bigoplus 2 \bigoplus\cdots\bigoplus N1⨁2⨁⋯⨁N 的值. A \bigoplus BA⨁B 即AA , BB 按位异或. ...

  7. 洛谷—— P3908 异或之和

    https://www.luogu.org/problemnew/show/P3908 题目描述 求1 \bigoplus 2 \bigoplus\cdots\bigoplus N1⨁2⨁⋯⨁N 的值 ...

  8. 洛谷.5283.[十二省联考2019]异或粽子(可持久化Trie 堆)

    LOJ 洛谷 考场上都拍上了,8:50才发现我读错了题=-= 两天都读错题...醉惹... \(Solution1\) 先求一遍前缀异或和. 假设左端点是\(i\),那么我们要在\([i,n]\)中找 ...

  9. 「洛谷5283」「LOJ3048」「十二省联考2019」异或粽子【可持久化01trie+优先队列】

    题目链接 [洛谷传送门] [LOJ传送门] 题目大意 让你求区间异或和前\(k\)大的异或和的和. 正解 这道题目是Blue sky大佬教我做的(祝贺bluesky大佬进HA省A队) 我们做过某一些题 ...

随机推荐

  1. iOS 网络请求--- AFNetworing的使用

    一.GET请求方式: //1.管理器 AFHTTPRequestOperationManager *manager = [AFHTTPRequestOperationManager manager]; ...

  2. 基于FPGA的HDTV视频图像灰度直方图统计算法设计

    随着HDTV的普及,以LCD-TV为主的高清数字电视逐渐进入蓬勃发展时期.与传统CRT电视不同的是,这些高清数字电视需要较复杂的视频处理电路来驱动,比如:模数转换(A/D Converter).去隔行 ...

  3. Spring+SpringMVC+MyBatis整合(山东数漫江湖)

    Spring+SpringMVC+MyBatis(SSM)在我们项目中是经常用到的,这篇文章主要讲解使用Intellij IDEA整合SSM,具体环境如下: 数据库:MySQL5.7 依赖管理:Mav ...

  4. 4 Values whose Sum is 0 POJ 2785 (折半枚举)

    题目链接 Description The SUM problem can be formulated as follows: given four lists A, B, C, D of intege ...

  5. 高精度模板_C++

    高精度压位,压9位 read:读入 write:输出 copy:赋值 change:交换 empty:清0 cmp:比较大小,相当于小于号 plus:加法 dec:减法 multy:乘法 除法实在不会 ...

  6. C语言restrict限定符

    restrict是c99标准引入的,它只可以用于限定和约束指针,并表明指针是访问一个数据对象的唯一且初始的方式.即它告诉编译器,所有修改该指针所指向内存中内容的操作都必须通过该指针来修改,而不能通过其 ...

  7. [总结]可重用cell的定义方式

    1.简介 为了提高tableview中cell的加载速度通常可以使用cell重用的方式来实现,即我们向上拖动cell的时候,上部份消失的cell可以重复的被下部分出现的cell重用. 2.说明 一般c ...

  8. 在Xcode中使用自定义的代码片段提高效率

    拖动代码的时候按住option键,很难拖,注意方法:< 引用于:http://www.2cto.com/kf/201409/336245.html

  9. python 数据类型 变量 注释

    基本数据类型: 数字 number :整数 int . 浮点数 float.复数 complex.布尔值 bool 列表 list  :  使用 方括号  []  表示,例如: [1,2,'abc'] ...

  10. Codeforces 877C Slava and tanks(思维)

    题目链接:http://codeforces.com/problemset 题目大意:有n个格子,某些格子里可能有一个或多个坦克,但不知道具体位置,每个坦克被轰炸一次就会移动到相邻的格子里(第1个格子 ...