前言

​ “倍增”,作为一种二进制拆分思想,广泛用于各中算法,如$ST$表,求解$LCA$等等...今天,我们仅讨论用该思想来求解树上两个节点的$LCA$(最近公共祖先)

“倍增”是什么东西?

​ 倍增就是“成倍增加”的意思,比如$1$倍增后变成了$2$,$2$倍增后就变成了$4$,$4$变成$8$,以此类推...

实现

一直向上LCA

​ 在讲真正的倍增之前,我们先来说说最朴素的$LCA$,对于需要求解的两个点$(x,y)$,我们最先能想到的方法就是两个点先到达同一深度,然后一直往上跳父亲,知道两个点跳到同一个点上,这个点就是$LCA$。

int LCA (int x, int y) {
if (depth[x] < depth[y]) swap(x, y);
while(depth[x] != depth[y]) x = fa[x];
while(x != y) x = fa[x], y = fa[y];
return x;
}

​ 不难发现,这种算法的时间开销很大,我们想办法来优化它。

倍增LCA

​ 就如同$ST$表一样,我们不妨设$f[i][j]$表示树上编号为$i$的节点向上跳$2^j$个节点后所达到的节点,如同$ST$表的预处理,我们很容易发现如何预处理出这个$f$数组:

f[i][j] = f[f[i][j-1]][j-1];

​ 显然,$i$往上跳$2{j-1}$次之后再跳$2{j-1}$次之后就相当于$i$往上跳$2^j$次,我们可以借此来优化,利用二进制优化背包的思想那样,将跳的次数二进制拆分。

​ 于是,我们改写一下之前的代码

int LCA (int x, int y) {
if (depth[x] < depth[y]) swap(x, y);
for (int i = LogN; i >= 0; --i)
if (depth[f[x][i]] >= depth[y])
x = f[x][i];
if (x == y) return x;
for (int i = LogN; i >= 0; --i)
if (f[x][i] != f[y][i])
x = f[x][i], y = f[y][i];
return f[x][0];
}

​ 这样一来,速度就快很多了,由原来的$O(Depth)$变成了现在的$O(log_2(Depth))$

代码

#include <cstdio>
#include <cstring>
typedef int ll; const ll N = 5e5 + 10, M = 5e5 + 10, LogN = 25;
ll n, m, s, depth[N], f[N][LogN], a, b, c;
ll from[N], to[M << 1], nxt[M << 1], cnt, tmp, Log[N];
inline void swap (ll &a, ll &b) {tmp = a, a = b, b = tmp;}
//链式前向星加边
void addEdge (ll u, ll v) {
to[++cnt] = v, nxt[cnt] = from[u], from[u] = cnt;
}
//计算深度&计算祖先
void doit (ll u, ll fa) {
depth[u] = depth[fa] + 1;
for (register ll i = 1; i <= Log[n]; ++i) {
if ((1 << i) >= depth[u]) break;
f[u][i] = f[f[u][i - 1]][i - 1];
}
for (register ll i = from[u]; i; i = nxt[i]) {
ll v = to[i];
if (v == fa) continue;
f[v][0] = u;
doit (v, u);
}
}
//计算LCA
inline ll LCA (ll x, ll y) {
if (depth[x] < depth[y]) swap(x, y);
//我们默认x为更深的那个点
for (register ll i = 0; i <= Log[n]; ++i)
if (depth[f[x][i]] >= depth[y])
x = f[x][i];
//将x跳到和y同一深度上
if (x == y) return x;
for (register ll i = Log[n]; i >= 0; --i)
if (f[x][i] != f[y][i])
x = f[x][i], y = f[y][i];
//一起向上跳
return f[x][0];
//不难看出,此时两个点均在其LCA的下方,往上跳一次即可
} int main () {
scanf ("%d%d", &n, &m);//n节点数 m询问次数
Log[0] = -1;
for (register ll i = 1, u, v; i < n; ++i) {
scanf ("%d%d", &u, &v);
addEdge (u, v); addEdge(v, u);
Log[i] = Log[i >> 1] + 1;
}
Log[n] = Log[n >> 1] + 1;
doit (1, 0);
while (m--) {
scanf ("%d%d", &a, &b);
printf ("%d\n", LCA(a, b)));
}
return 0;
}

倍增LCA学习笔记的更多相关文章

  1. 倍增求LCA学习笔记(洛谷 P3379 【模板】最近公共祖先(LCA))

    倍增求\(LCA\) 倍增基础 从字面意思理解,倍增就是"成倍增长". 一般地,此处的增长并非线性地翻倍,而是在预处理时处理长度为\(2^n(n\in \mathbb{N}^+)\ ...

  2. LCA学习笔记

    写在前面 目录 一.LCA的定义 二.暴力法求LCA 三.倍增法求LCA 四.树链剖分求LCA 五.LCA典型例题 题目完成度 一.LCA的定义 LCA指的是最近公共祖先.具体地,给定一棵有根树,若结 ...

  3. 树链剖分 树剖求lca 学习笔记

    树链剖分 顾名思义,就是把一课时分成若干条链,使得它可以用数据结构(例如线段树)来维护 一些定义: 重儿子:子树最大的儿子 轻儿子:除了重儿子以外的儿子 重边:父节点与重儿子组成的边 轻边:除重边以外 ...

  4. 关于LCA的倍增解法的笔记

    emmmmm近日刚刚学习了LCA的倍增做法,写一篇BLOG来加强一下印象w 首先 何为LCA? LCA“光辉”是印度斯坦航空公司(HAL)为满足印度空军需要研制的单座单发轻型全天候超音速战斗攻击机,主 ...

  5. kruskal重构树学习笔记

    \(kruskal\) 重构树学习笔记 前言 \(8102IONCC\) 中考到了,本蒟蒻不会,所以学一下. 前置知识 \(kruskal​\) 求最小(大)生成树,树上求 \(lca​\). 算法详 ...

  6. 「洛谷3292」「BZOJ4568」「SCOI2016」幸运数字【倍增LCA+线性基+合并】

    [bzoj数据下载地址]不要谢我 先讲一下窝是怎么错的... \(MLE\)是因为数组开小了.. 看到异或和最大,那么就会想到用线性基. 如果不会线性基的可以参考一下我的学习笔记:「线性基」学习笔记a ...

  7. Day 4 学习笔记 各种图论

    Day 4 学习笔记 各种图论 图是什么???? 不是我上传的图床上的那些垃圾解释... 一.图: 1.定义 由顶点和边组成的集合叫做图. 2.分类: 边如果是有向边,就是有向图:否则,就是无向图. ...

  8. OI知识点|NOIP考点|省选考点|教程与学习笔记合集

    点亮技能树行动-- 本篇blog按照分类将网上写的OI知识点归纳了一下,然后会附上蒟蒻我的学习笔记或者是我认为写的不错的专题博客qwqwqwq(好吧,其实已经咕咕咕了...) 基础算法 贪心 枚举 分 ...

  9. 【学习笔记】Kruskal 重构树

    1. 例题引入:BZOJ3551 用一道例题引入:BZOJ3551 题目大意:有 \(N\) 座山峰,每座山峰有他的高度 \(h_i\).有些山峰之间有双向道路相连,共 \(M\) 条路径,每条路径有 ...

随机推荐

  1. wcf 服务创建,配置,测试

    一.WCF创建: 常规的创建WCF服务是通过SOAP传输的,很多网站开发人员想放弃使用XML而使用JSON,这个时候可以参照:http://www.cnblogs.com/zhili/p/WCFRes ...

  2. 【Foreign】数据结构C [线段树]

    数据结构C Time Limit: 20 Sec  Memory Limit: 512 MB Description Input Output Sample Input Sample Output H ...

  3. Codeforces 321E Ciel and Gondolas

    传送门:http://codeforces.com/problemset/problem/321/E [题解] 首先有一个$O(n^2k)$的dp. # include <stdio.h> ...

  4. 「6月雅礼集训 2017 Day4」寻找天哥

    [题目大意] 给出$n$个三维向量,设当前向量长度为$L$,每次沿着向量等概率走$[0,L]$个长度.一个球每秒半径增加1个长度,直到覆盖位置,每秒耗能为球体积,求总耗能的期望. 设最后半径为R,那么 ...

  5. quick-cocos2dx lua中读取 加密 csv表

    我非常想把一些非必需的信息以CSV表的格式保存到客户端,以减少和服务器的通讯,降低压力.于是写了这么一个. 但因为大家觉得这样的话,需要每次登陆时来检测同步这些数据,会减慢登陆速度,于是没有用到. 我 ...

  6. 重写strstr、strcpy、memcpy、memset、atof算法

    #include<stdio.h> #include <stdlib.h> #include <string.h> #include <ctype.h> ...

  7. oracle scott用户不存在

    scott用户拥有一些基础的数据表,可以供我们练习sql.先执行 alter user scott account unlock; 查看scott用户是否存在 当scott用户不存在,我们就需要在$O ...

  8. C#编写程序监测某个文件夹内是否有文件进行了增,删,改的动作?

    新建一个Console应用程序,项目名称为“FileSystemWatcher”,Copy代码进,编译后就可以用了.代码如下: using System; using System.Collectio ...

  9. 【遍历集合】Java遍历List,Map,Vector,Set的几种方法

    关于list,map,set的区别参考http://www.cnblogs.com/qlqwjy/p/7406573.html 1.遍历list @Test public void testList( ...

  10. FAN54015 充電電流 軟硬體設定

    Ex1: Vrsense 選 37.4 mV --- 在第二張圖 Rsense 選 50 mΩ --- 在第三張圖 37.4 / 50 = 748 mA Ex2: Vrsense 選 44.2 mV ...