SRM13 T3 花六游鸟小(结论题)
哇这题是真的喵,HR智商太高辣
这题的难点就是看了题解之后怎么证明题解里的结论...
结论①:深度大于logm的点肯定能达到最大值
证明:显然一个西瓜的属性里0数量一半1数量一半我们取到的1数量最少,所以我们最多logm个点就可以把所有属性取到1
结论②:未达到最大值的点相邻两个肯定价值不同
证明:易证,取反即可
结论③:有n个西瓜,记s[i]为拥有的属性i的集合,当s取遍所有可能的2^n种集合的时候达不到最大值
证明:显然所有的集合里必有一个全0的集合,我们至少需要把这个集合里的一个0变成1。把第一列的取反,让全0集合出现第一个1,但是必定存在有一个集合只有第一列是1,其他列是0的情况,那么又出现了一个全0集合,那么又需要把第二列取反,以此类推我们将会把所有列取反一次,但是所有的集合里必定有一个全1的集合,我们每一列都取反了一次之后,全1集合变成全0集合了,所以肯定取不到最大值。
我们(其实是HR)可以发现!对列取反的操作实际上是交换集合位置的操作!(ORZ HR!
因为我们有2^n个集合,所以必定不可能把全0集合消去,所以必定取不到最大值!
结论④:有n个西瓜,记s[i]为拥有的属性i的集合,当s[i]没有取遍所有可能的2^n种集合的时候肯定可以达到最大值
证明:借用我们证明结论③时所发现的,我们少了某一个集合,那么只要把全0集合交换成那个缺少的集合即可
可能有点抽象,所以我们具体分析一下。如果缺少的是全0集合,那么直接就可以取到最大值了。如果缺少的不是全0集合,我们就把缺少的集合为1的那几列取反,相当于将全0集合与缺少的集合交换,缺少的集合必定有1,而且不存在除了缺少的集合之外存在一个只有取反的那几列是1其他是0的集合,于是就可以取到最大值。
本质:对列取反的操作实际上是交换集合位置的操作
想明白了这个之后,就可以非常轻松的证明并理解这些结论了
SRM13 T3 花六游鸟小(结论题)的更多相关文章
- 【STSRM13】花六游鸟小
[题意]给定n个节点的树,每个节点有一个m位二进制数,数字可以随时按位取反,每个数位有一个价值,定义每个点的最大价值是从根到这个点路上的数字(可以取反)或起来的数字中,1有价值0无价值,加起来得到的最 ...
- [BZOJ3609][Heoi2014]人人尽说江南好 结论题
Description 小 Z 是一个不折不扣的 ZRP(Zealot Round-game Player,回合制游戏狂热玩家), 最近他 想起了小时候在江南玩过的一个游戏. 在过去,人们是要 ...
- agc015F - Kenus the Ancient Greek(结论题)
题意 题目链接 $Q$组询问,每次给出$[x, y]$,定义$f(x, y)$为计算$(x, y)$的最大公约数需要的步数,设$i \leqslant x, j \leqslant y$,求$max( ...
- [codevs5578][咸鱼]tarjan/结论题
5578 咸鱼 时间限制: 1 s 空间限制: 128000 KB 题目描述 Description 在广袤的正方形土地上有n条水平的河流和m条垂直的河流,发达的咸鱼家族在m*n个河流交叉点都 ...
- BZOJ_1367_[Baltic2004]sequence_结论题+可并堆
BZOJ_1367_[Baltic2004]sequence_结论题+可并堆 Description Input Output 一个整数R Sample Input 7 9 4 8 20 14 15 ...
- 【uoj#282】长度测量鸡 结论题
题目描述 给出一个长度为 $\frac{n(n+1)}2$ 的直尺,要在 $0$ 和 $\frac{n(n+1)}2$ 之间选择 $n-1$ 个刻度,使得 $1\sim \frac{n(n+1)}2$ ...
- 【uoj#175】新年的网警 结论题+Hash
题目描述 给出一张 $n$ 个点 $m$ 条边的无向连通图,每条边的边权为1.对于每个点 $i$ ,问是否存在另一个点 $j$ ,使得对于任意一个不为 $i$ 或 $j$ 的点 $k$ ,$i$ 到 ...
- 【uoj#180】[UR #12]实验室外的攻防战 结论题+树状数组
题目描述 给出两个长度为 $n$ 的排列 $A$ 和 $B$ ,如果 $A_i>A_{i+1}$ 则可以交换 $A_i$ 和 $A_{i+1}$ .问是否能将 $A$ 交换成 $B$ . 输入 ...
- 【bzoj4401】块的计数 结论题
题目描述 给出一棵n个点的树,求有多少个si使得整棵树可以分为n/si个连通块. 输入 第一行一个正整数N,表示这棵树的结点总数,接下来N-1行,每行两个数字X,Y表示编号为X的结点与编号为Y的结点相 ...
随机推荐
- 前端开发工程师 - 01.页面制作 - 第3章.HTML
第3章--HTML HTML简介 Hyper Text Markup Language:超文本标记语言--用于标记网页的内容 history: html(1991)雏形 -> html4.01( ...
- 181. Flip Bits【LintCode, by java】
Description Determine the number of bits required to flip if you want to convert integer n to intege ...
- 变量不加 var 声明——掉进坑中,无法自拔!
整整一下午,都在解决 window.onresize 中方法丢失不执行的问题!姿势固定在电脑前,颈椎病都犯了. 前些日子与大家分享了一下关于 防止jquery $(window).resize()多次 ...
- https的主体过程
https其实就是基于SSL的http.加密后的http信息按理是不会被篡改和查看的. https的过程总体上是按照下面来进行的: 1.客户端发起请求,服务端返回一个SSL证书,证书里面有一公钥A. ...
- 最全NB-IoT/eMTC物联网解决方案名录汇总
NB-IoT/eMTC等蜂窝物联网技术的成熟和商用,占据低功耗广域网络(LPWAN)的主流地位,推动全球物联网新一轮发展热潮,越来越多的行业开始采用物联网方案来解决解决实际问题.实现落地应用,越来越多 ...
- 20172330 2017-2018-1 《Java程序设计》第八周学习总结
学号 2017-2018-1 <程序设计与数据结构>第八周学习总结 教材学习内容总结 这一章主要是对多态性的学习: 由继承实现多态性 多态性引用能够随时间变化指向不同类型的对象. 对于多态 ...
- Java接口与继承作业
为什么子类的构造方法在运行之前,必须调用父类的构造方法?能不能反过来?为什么不能反过来? 因为子类继承了父类,那么就默认的含有父类的公共成员方法和公共成员变量,这些方法和变量在子类里不再重复声明.如果 ...
- Tomcat服务器学习和使用(一)
一.Tomcat服务器端口的配置 Tomcat的所有配置都放在conf文件夹之中,里面的server.xml文件是配置的核心文件. 如果想修改Tomcat服务器的启动端口,则可以在server.xml ...
- SQL SERVER技术内幕之10 可编程对象
一.变量 变量用于临时保存数据值,以供在声明它们的同一批处理语句中引用.例如,以下代码先声明一个数据类型为INT的变量@i,再将它赋值为10; DECLARE @i as INT; SET @i = ...
- checkBox1_CheckedChanged(object sender, EventArgs e)和checkBox1_CheckStateChanged(object sender, EventArgs e)不同
using System; using System.Data; using System.Drawing; using System.Text; using System.Windows.Forms ...