【题目描述】一个2*i的矩阵,一共有m种颜色,相邻两个格子颜色不能相同,m种颜色不必都用上,f[i]表示这个答案,求Σf[i]*(2*i)^m (1<=i<=n)%p。

  【数据范围】

    20% n,m<10^5 p<10^9

    其余 n<10^9

      其中40% m<100 p<10^9

        20% m<10^3 p<10^9

        20% m<10^4 p<10^3

  首先我们可以推导出f[i]的式子,f[1]=m*(m-1),因为其余的格子,我们第一个格子可以放m-1种颜色,第二个格子在第一个格子和上一层第二个格子颜色不同时有m-2种情况,相同时有m-1种情况,那么我们可以得出f[i]=f[i-1]*(m^2-3*m+3),设a=m^2-3*m+3,那么问题就变成了求2^m*m*(m-1)/a*Σa^i*i^m (1<=i<=n)。

  对于前20%的数据,我们可以暴力的nlogm递推求解。

  对于中间的20%数据,我们可以化简一下求解式。

    设w[i][j]为Σa^j*j^k (1<=j<=i),那么答案就成了2^m*m*(m-1)/a*w[n][m],现在的问题就是求解w[n][m]。

    w[n][m]=Σa^i*i^m (1<=i<=n),w[n+1][m]=Σa^i*i^m (1<=i<=n+1)=a+Σa^i*i^m (2<=i<=n+1)=a+a*Σa^i*(i+1)^m (1<=i<=n)

    那么我们可以根据二项式展开来化简,w[n+1][m]=a+a*Σa^iΣc(m,j)*i^j (1<=i<=n) (0<=j<=m)=a+a*Σc(m,j)*w[n][j] (0<=j<=m),那么这样我们就可以写一个矩阵来加速在n^3logn的时间内求解了。

  对于m<10^3的情况,w[n+1][m]=w[n][m]+a^(n+1)*(i+1)^m。根据刚才的推导,w[n+1][m]=a+a*Σc(m,j)*w[n][j] (0<=j<=m)。所以我们可以得到

    w[n][m]+a^(n+1)*(i+1)^m=a+a*Σc(m,j)*w[n][j] (0<=j<=m),这样我们发现,如果我们知道了w[n][m]之前的w[n][j],那么我们可以在m的时间内反解出w[n][j]。

  对于最后的20%,我们发现p非常小,考虑答案的求和式Σa^i*i^m,发现这个式子之和i和i^m有关,当i,i^m和j,j^m关于mod p相等之后,那么i与j之后的变换是相同的,我们可以发现一共有p^2个不同的情况,那么我们记下来这个循环之后就可以算出来了。

//By BLADEVIL
#include <cstdio>
#define LL long long
#define maxp 1010
#define maxm 1010 using namespace std; int n,m,p,a;
int mo[maxp],next[maxp],w[maxm],c[maxm][maxm];
int flag[maxp][maxp],f[maxp*maxp],g[maxp*maxp]; int mi(int a,int k) {
int ans=;
while (k) {
if (k&) ans=((LL)ans*a)%p;
a=((LL)a*a)%p;
k>>=;
}
return ans;
} void work1() {
int ans=;
ans=((LL)m*(m-))%p; ans=((LL)ans*mi(,m))%p;
ans=((LL)ans*mi(a,p-))%p; //printf("%d\n",ans);
int cur=;
for (int i=;i<=n;i++) cur=((LL)cur+(LL)mi(a,i)*mi(i,m))%p;
ans=((LL)ans*cur)%p;
printf("%d\n",ans);
} void work2() {
int i,l,r;
f[]=(LL)m*(m-)%p; g[]=(LL)f[]*mi(,m)%p;
flag[][f[]]=;
for (i=;i<=n;i++) {
f[i]=(LL)f[i-]*a%p;
g[i]=(LL)f[i]*mi(*i,m)%p;
if (flag[i%p][f[i]]) {
l=flag[i%p][f[i]];
r=i-;
break;
}
flag[i%p][f[i]]=i;
}
//printf("%d %d %d %d\n",l,r,i,g[i]);
int len=r-l+,ans=,tmp=;
for (int j=;j<l;j++) ans=(ans+g[j])%p;
n-=l-;
for (int j=l;j<=r;j++) tmp=(tmp+g[j])%p;
ans=(ans+(LL)tmp*(n/len)%p)%p;
for (int j=;j<=n%len;j++) ans=(ans+g[l+j-])%p;
printf("%d\n",ans);
} void work3() {
for (int i=;i<=m;i++) {
c[i][]=c[i][i]=;
for (int j=;j<i;j++) c[i][j]=(c[i-][j]+c[i-][j-])%p;
}
int ans=;
ans=((LL)m*(m-))%p; ans=((LL)ans*mi(,m))%p;
ans=((LL)ans*mi(a,p-))%p; //printf("%d\n",ans);
//for (int i=1;i<=m;i++) printf("%d ",c[m][i]); printf("\n");
w[]=((LL)mi(a,n+)-a+p)%p; w[]=((LL)w[]*mi(a-,p-))%p;
//printf("%d\n",w[0]);
for (int i=;i<=m;i++) {
w[i]=((LL)mi(a,n+)*mi(n+,i)-a+p)%p;
for (int j=;j<i;j++) w[i]=((LL)w[i]-((LL)a*c[i][j]%p*w[j]%p)+p)%p;
w[i]=(LL)w[i]*mi(a-,p-)%p;
w[i]%=p;
}
//printf("%d\n",w[m]);
ans=((LL)ans*w[m])%p;
printf("%d\n",ans);
} int main() {
freopen("color.in","r",stdin); freopen("color.out","w",stdout);
scanf("%d%d%d",&n,&m,&p);
a=((LL)m*m-*m+)%p;
if (n<=) work1(); else
if (m>) work2(); else work3();
fclose(stdin); fclose(stdout);
return ;
}

【HNOI】矩阵染色 数论的更多相关文章

  1. 【BZOJ3243】【NOI2013】向量内积(矩阵,数论)

    [BZOJ3243][NOI2013]向量内积(矩阵,数论) 题面 BZOJ 题解 这题好神仙. 首先\(60\)分直接是送的.加点随机之类的可以多得点分. 考虑正解. 我们先考虑一下暴力. 我们把\ ...

  2. 矩阵乘法快速幂 codevs 1250 Fibonacci数列

    codevs 1250 Fibonacci数列  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 钻石 Diamond   题目描述 Description 定义:f0=f1=1 ...

  3. Codevs 1287 矩阵乘法&&Noi.cn 09:矩阵乘法(矩阵乘法练手题)

    1287 矩阵乘法  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 黄金 Gold 题解  查看运行结果     题目描述 Description 小明最近在为线性代数而头疼, ...

  4. Codevs 1305 Freda的道路(矩阵乘法 DP优化)

    1305 Freda的道路 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 大师 Master 题目描述 Description Freda要到Rainbow的城堡去玩了.我们可以认 ...

  5. Codevs 1482 路线统计(矩阵乘法)

    1482 路线统计 时间限制: 1 s 空间限制: 256000 KB 题目等级 : 钻石 Diamond 题目描述 Description N个节点的有向图, 求从start到finish刚好经过时 ...

  6. Codevs 1070 普通递归关系(矩阵乘法)

    1070 普通递归关系 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 大师 Master 题目描述 Description 考虑以下定义在非负整数n上的递归关系 f(n) = f0 ...

  7. 1250 Fibonacci数列(矩阵乘法)

    1250 Fibonacci数列 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 钻石 Diamond 题目描述 Description 定义:f0=f1=1, fn=fn-1+fn ...

  8. Codevs 1574 广义斐波那契数列(矩阵乘法)

    1574 广义斐波那契数列 时间限制: 1 s 空间限制: 256000 KB 题目等级 : 钻石 Diamond 题目描述 Description 广义的斐波那契数列是指形如an=p*an-1+q* ...

  9. Codeforces Round #344 (Div. 2) B. Print Check

    B. Print Check time limit per test 1 second memory limit per test 256 megabytes input standard input ...

随机推荐

  1. 重要的几个按键Tab Ctrl+c Ctrl+d

    1.Tab按键具有命令补齐和档案补齐的功能,重点是可以避免我们打错命令或者文件名,但是Tab按键在不同的地方输入会有不同的结果 试着多按几下,或者连按两次相信你会发现新大陆 a.Tab接在一串指令的第 ...

  2. hibernate映射表

    <?xml version="1.0"?>   <!DOCTYPE hibernate-mapping PUBLIC        "-//Hibern ...

  3. JAVA IDE IntelliJ IDEA使用简介(二)—之基本操作

    一.在编辑器中打开文件  1.可以使用下面的几种方式打开project内的文件进行编辑  (·)在project窗口中双击需要编辑的文件.  (·)在project窗口选择需要编辑的文件,按F4  ( ...

  4. 利用FluidMoveBehavior制作出手机通讯录平滑的效果

    最近学习Blend,原来Blend制作动画等效果非常棒.下面演示一下FluidMoveBehavior应用,利用Blend中行为中的FluidMoveBehavior制作出手机通讯录平滑的效果 1.在 ...

  5. 将下载到本地的JAR包手动添加到Maven仓库(转)

    常用Maven仓库网址:http://mvnrepository.com/http://search.maven.org/http://repository.sonatype.org/content/ ...

  6. ismember matlab

    ismember 判断A中的元素在B中有没有出现 LIA = ismember(A,B) for arrays A and B returns an array of the same size as ...

  7. Python 开篇及第一个Python程序

    本节内容 python 简单介绍 python 2.x 或者python 3.x python 安装 第一个python程序 一.python简单介绍 python的创始人为吉多.范罗苏姆(Guido ...

  8. hdu 3367 Pseudoforest (最小生成树)

    Pseudoforest Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Tot ...

  9. P2845 [USACO15DEC]Switching on the Lights 开关灯

    题目背景 来源:usaco-2015-dec Farm John 最近新建了一批巨大的牛棚.这些牛棚构成了一个N*N的矩形网络.(1<n<100) 然而bessie十分怕黑,他想计算可以把 ...

  10. P2613 【模板】有理数取余

    题目描述 给出一个有理数 $c=\frac{a}{b}$ ,求 c mod 19260817 的值. 输入输出格式 输入格式: 一共两行. 第一行,一个整数 aa .第二行,一个整数 bb . 输出格 ...