Tornado

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 196    Accepted Submission(s): 48

Problem Description
Professor Jonathan is a well-known Canadian physicist and meteorologist. People who know him well call him “Wind Chaser”. It is not only because of his outstanding tornado research which is the most influential in the academic community, but also because of his courageous act in collecting real data of tornados. Actually he has been leading his team chasing tornado by cars equipped with advanced instruments hundreds of times.

In summer, tornado often occurs in the place where Professor Jonathan lives. After several years of research, Wind Chaser found many formation rules and moving patterns of tornados. In the satellite image, a tornado is a circle with radius of several meters to several kilometers. And its center moves between two locations in a straight line, back and forth at a fixed speed. After observing a tornado’s movement, Wind Chaser will pick a highway, which is also a straight line, and chase the tornado along the highway at the maximum speed of his car.

The smallest distance between the Wind Chaser and the center of the tornado during the whole wind chasing process, is called “observation distance”. Observation distance is critical for the research activity. If it is too short, Wind Chaser may get killed; and if it is too far, Wind Chaser can’t observe the tornado well. After many times of risk on lives and upset miss, Wind Chaser turns to you, one of his most brilliant students, for help. The only thing he wants to know is the forthcoming wind chasing will be dangerous, successful or just a miss.

 
Input
Input contains multiple test cases. Each test case consists of three lines which are in the following format.

xw1 yw1 xw2 yw2 vw
xt1 yt1 xt2 yt2 vt
dl du

In the first line, (xw1, yw1) means the start position of Wind Chaser; (xw2, yw2) is another position in the highway which Wind Chaser will definitely pass through; and vw is the speed of the car. Wind chaser will drive to the end of the world along that infinite long highway.
In the second line, (xt1, yt1) is the start position of tornado; (xt2, yt2) is the turn-around position and vt is the tornado’s speed. In other words, the tornado’s center moves back and forth between (xt1, yt1) and (xt2, yt2) at speed vt .

The third line shows that if the observation distance is smaller than dl , it will be very dangerous; and if the observation distance is larger than du, it will be a miss; otherwise it will lead to a perfect observation.

All numbers in the input are floating numbers.

-2000000000 <= xw1, yw1, xw2, yw2, xt1, yt1, xt2, yt2 <= 2000000000
1 <= vw, vt <= 20000
0 <= dl, du <= 2000000

Note:
1.  It’s guaranteed that the observation distance won’t be very close to dl or du during the whole wind chasing process. There will be at least 10-5 of difference. 
2.  Wind Chaser and the tornado start to move at the same time from their start position.

 
Output
For each test case output one line contains one word “Dangerous”, “Perfect” or “Miss” which describes the prediction of the observation.
 
Sample Input
0 0 1 0 2
10 -5 12 7 4
1.3 2.7
0 0 1 0 2
10 -5 12 7 1
0.3 0.4
 
Sample Output
Dangerous
Perfect
 
Source
 
Recommend
gaojie   |   We have carefully selected several similar problems for you:  2490 2494 3254 2267 1755 
 

代码:

 #include<stdio.h>
#include<string.h>
#include<stdlib.h>
#include<math.h>
const int MAX= ;
const double esp = 1e-; struct Tnode
{
double x,y;
}w1,w2,t1,t2;
double vw,vt,dl,du;
double getmin(double a , double b)
{
return (a>b)?b:a;
}
//求点积
double dianji(Tnode &a ,Tnode &b ,Tnode &c)
{
return (b.x-a.x)*(c.x-a.x)+(b.y-a.y)*(c.y-a.y);
}
//求叉 积
double det(Tnode &a ,Tnode &b ,Tnode &c)
{
return (b.x-a.x)*(c.y-a.y)-(c.x-a.x)*(b.y-a.y);
}
//求距离
double dis(Tnode &a,Tnode &b)
{
return sqrt(fabs((b.x-a.x)*(b.x-a.x)+(b.y-a.y)*(b.y-a.y)));
}
//求点o到线段的最近的距离
double getdistance(Tnode &o,Tnode a ,Tnode b,double dx,double dy)
{
a.x+=dx;
a.y+=dy;
b.x+=dx;
b.y+=dy;
double d =getmin(dis(o,a),dis(o,b));
double di=dis(a,b);
if(di<=esp) return dis(o,a);
if(dianji(a,o,b)>=-esp&&dianji(b,o,a)>=-esp)
return fabs(det(a,b,o))/di;
else
return getmin(dis(o,a),dis(o,b));
}
//求o到以线段ab为起始,(dx,dy)为间距的平行线段的最近距离
double calc(Tnode &o ,Tnode &a ,Tnode &b , double dx, double dy)
{
Tnode a1,b1;
int ll=,rr=MAX;
while(ll<rr)
{
int mid=(ll+rr)/;
double d1=getdistance(o,a,b,dx*mid,dy*mid);
double d2=getdistance(o,a,b,dx*(mid+),dy*(mid+));
if(d1<=d2+esp) rr=mid;
else ll=mid+;
}
return getdistance(o,a,b,dx*ll,dy*ll);
}
void work()
{
Tnode wdr ,tdr,move,a1,b1,a2,b2;
double distance,time,d,d1,d2;
distance=dis(w1,w2);
wdr.x = (w2.x-w1.x)*vw/distance;
wdr.y = (w2.y-w1.y)*vw/distance;
distance = dis(t1,t2);
time = distance/vt;
tdr.x = (t2.x-t1.x)*vt/distance;
tdr.y=(t2.y-t1.y)*vt/distance;
move.x=(-wdr.x+tdr.x)*time;
move.y=(-wdr.y+tdr.y)*time;
//求两个线段簇的第一条线段a1-b1和a2-b2
a1=t1;
b1.x=a1.x+move.x;
b1.y=a1.y+move.y;
move.x=(-wdr.x-tdr.x)*time;
move.y=(-wdr.y-tdr.y)*time;
a2=b1;
b2.x=a2.x+move.x;
b2.y=a2.y+move.y;
//分别求点w1到两个线段簇的最近距离d1和d3
d1=calc(w1,a1,b1,b2.x-a1.x,b2.y-a1.y);
d2=calc(w1,a2,b2,b2.x-a1.x,b2.y-a1.y);
//判断结果
d=getmin(d1,d2);
if(d+esp<d1) printf("Dangerous\n");
else if(d-esp>du) printf("Miss\n");
else printf("Perfect\n");
}
int main()
{
while(scanf("%lf",&w1.x)!=EOF)
{
scanf("%lf%lf%lf%lf",&w1.y,&w2.x,&w2.y,&vw);
scanf("%lf%lf%lf%lf%lf",&t1.x,&t1.y,&t2.x,&t2.y,&vt);
scanf("%lf%lf",&dl,&du);
work();
}
return ;
}

hdu------2488Tornado(几何)的更多相关文章

  1. hdu 5430(几何)

    题意:求光在圆内反射n次后第一次返回原点的方案数 如果k和n-1可约分,则表明是循环多次反射方案才返回原点. #include <iostream> #include <cstrin ...

  2. hdu 1577 WisKey的眼神 (数学几何)

    WisKey的眼神 Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total S ...

  3. POJ 3831 &amp; HDU 3264 Open-air shopping malls(几何)

    题目链接: POJ:id=3831" target="_blank">http://poj.org/problem?id=3831 HDU:http://acm.h ...

  4. HDU 1700 Points on Cycle (几何 向量旋转)

    http://acm.hdu.edu.cn/showproblem.php?pid=1700 题目大意: 二维平面,一个圆的圆心在原点上.给定圆上的一点A,求另外两点B,C,B.C在圆上,并且三角形A ...

  5. HDU 1432 Lining Up(几何)

    http://acm.hdu.edu.cn/showproblem.php?pid=1432 题目大意: 2维平面上给定n个点,求一条直线能够穿过点数最多是多少. 解题思路: 因为题目给定的n(1~7 ...

  6. HDU 1392 Surround the Trees(几何 凸包模板)

    http://acm.hdu.edu.cn/showproblem.php?pid=1392 题目大意: 二维平面给定n个点,用一条最短的绳子将所有的点都围在里面,求绳子的长度. 解题思路: 凸包的模 ...

  7. hdu 5839(三维几何)

    Special Tetrahedron Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Othe ...

  8. hdu 1115 Lifting the Stone (数学几何)

    Lifting the Stone Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others ...

  9. hdu 1086 You can Solve a Geometry Problem too (几何)

    You can Solve a Geometry Problem too Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/3 ...

  10. HDU 5128.The E-pang Palace-计算几何

    The E-pang Palace Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 512000/512000 K (Java/Othe ...

随机推荐

  1. C#中Struct与Class的区别

    class和struct最本质的区别是class是引用类型,而struct是值类型,它们在内存中的分配情况有所区别. 什么是class? class(类)是面向对象编程的基本概念,是一种自定义数据结构 ...

  2. [HDOJ5787]K-wolf Number(数位DP)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5787 题意:求[L,R]区间内的数字,使得所有长度为k的子数列内所有数位都不同. K<=5的所以 ...

  3. const变量赋值报错分析

    const变量赋值报错分析 const变量赋值报错 从变量到常量的赋值是合法C++的语法约定的, 如从char 到const char顺畅: 但从char **到 const char **编译器就会 ...

  4. .net反射详解(转)

    摘自:http://www.cnblogs.com/knowledgesea/archive/2013/03/02/2935920.html 概述反射 通过反射可以提供类型信息,从而使得我们开发人员在 ...

  5. 《Linux内核设计的艺术》学习笔记(四)默认段和偏移寄存器

    参考书籍:<Intel微处理器> 表1 默认的16位段 + 偏移寻址组合 段 偏移量 特殊用途 CS IP 指令地址 SS SP或BP 堆栈地址 DS BX.DI.SI.8位或16位数 数 ...

  6. LINQ 如何实现 in 与 not in

    T-SQL的IN: Select ProductID, ProductName, CategoryID From dbo.Products Where CategoryID , ) T-SQL的NOT ...

  7. Jquery基本、层次选择器

    基本选择器: $("#none").css("background","#bbffaa"); 改变id为none的所有元素的背景色 $(&q ...

  8. Spring security3

    最近一直在学习spring security3,试着搭建了环境: 构建maven环境 项目配置pom.xml文件 <project xmlns="http://maven.apache ...

  9. [转载] nginx的负载均衡

    原文:http://www.srhang.me/blog/2014/08/27/nginx-loabbalance/ Nginx负载均衡 一.特点 1.1 应用情况 Nginx做为一个强大的Web服务 ...

  10. tracert命令详解

    一.windows.Linux系统下 tracert ip/网站域名 二.mac traceroute IP/域名 ---------2016-10-10 15:29:07-- source:[1]t ...