描述

Consider two natural numbers A and B. Let S be the sum of all natural divisors of A^B. Determine S modulo 9901 (the rest of the division of S by 9901).

输入

The only line contains the two natural numbers A and B, (0 <= A,B <= 50000000)separated by blanks.

输出

The only line of the output will contain S modulo 9901.

样例输入

2 3

样例输出

15

提示

2^3 = 8.

The natural divisors of 8 are: 1,2,4,8. Their sum is 15.

15 modulo 9901 is 15 (that should be output).

大概意思是让我们求 \(a^b\) 的所有因数的和膜9901的值

我们知道在算数基本定理中有 : \(a=p_{1}^{c_{1}}*p_{2}^{c_{2}}........*p_{n}^{c_{n}}\)(第一次用LaTeX)

所以\(a^b\)的约数和为 \((1+p_{1}+p_{1}^{2}.......+p_{1}^{b*c_{1}})*(1+p_{2}+p_{2}^{2}.......+p_{2}^{b*c_{2}}).....*(1+p_{n}+p_{n}^{2}.......+p_{n}^{b*c_{n}})\)

对于上面的每一项我们用等比公式求和

\(1+p_{1}+p_{1}^{2}.......+p_{1}^{b*c_{1}}\) = \(p_{1}^{b*c_{1}+1}-1\)/\(p_{1}-1\)

#include <cstdio>
#include <vector>
typedef long long int ll;
const ll mod=9901;
std::vector<ll> prime;
std::vector<ll> times;
inline void divide(ll n) {
for(ll i=2;i*i<=n;++i) {
if(n%i==0) {
prime.push_back(i);ll cnt=0;
while(n%i==0) {n/=i;++cnt;}
times.push_back(cnt);
}
}
if(n>1) {prime.push_back(n);times.push_back(1);}
}
inline ll qpow(ll n,ll k) {
ll ans=1;
while(k) {
if(k&1) ans=ans*n%mod;
n=n*n%mod;k>>=1;
}
return ans;
}
int main() {
ll a,b;scanf("%lld%lld",&a,&b);
divide(a);
ll ans=1;
for(int i=0,end=prime.size();i<end;++i) {
times[i]*=b;
if((prime[i]-1)%mod==0) ans=ans*(times[i]+1)%mod;
else ans=ans*((qpow(prime[i],times[i]+1)-1+mod)*qpow(prime[i]-1,mod-2)%mod)%mod;
}
printf("%lld\n",ans);
return 0;
}

【POJ1845】Sumdiv【算数基本定理 + 逆元】的更多相关文章

  1. 【题解】POJ1845 Sumdiv(乘法逆元+约数和)

    POJ1845:http://poj.org/problem?id=1845 思路: AB可以表示成多个质数的幂相乘的形式:AB=(a1n1)*(a2n2)* ...*(amnm) 根据算数基本定理可 ...

  2. POJ1845 Sumdiv [数论,逆元]

    题目传送门 Sumdiv Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 26041   Accepted: 6430 Des ...

  3. POJ1845 Sumdiv 数学?逆元?

    当初写过一篇分治的 题意:求A^B的所有因子之和,并对其取模 9901再输出 对于数A=p1^c1+p2^c2+...+pn*cn,它的所有约数之和为(1+p1+p1^2+p1^3+...+p1^(c ...

  4. poj1845 Sumdiv

    poj1845 Sumdiv 数学题 令人痛苦van分的数学题! 题意:求a^b的所有约数(包括1和它本身)之和%9901 这怎么做呀!!! 百度:约数和定理,会发现 p1^a1 * p2^a2 * ...

  5. 数论 - 算数基本定理的运用 --- nefu 118 : n!后面有多少个0

     题目链接:http://acm.nefu.edu.cn/JudgeOnline/problemshow.php Mean: 略. analyse: 刚开始想了半天都没想出来,数据这么大,难道是有什么 ...

  6. LightOJ 1336 Sigma Function 算数基本定理

    题目大意:f(n)为n的因子和,给出 n 求 1~n 中f(n)为偶数的个数. 题目思路:算数基本定理: n=p1^e1*p2^e1 …… pn^en (p为素数): f(n)=(1+p1+p1^2+ ...

  7. LightOJ 1341 Aladdin and the Flying Carpet 算数基本定理

    题目大意:给出面积n,和最短边m,求能形成的矩形的个数(不能为正方形). 题目思路:根据算数基本定理有: 1.每个数n都能被分解为:n=p1^a1*p2^a2*^p3^a3……pn^an(p为素数); ...

  8. pku 1401 Factorial 算数基本定理 && 51nod 1003 阶乘后面0的数量

    链接:http://poj.org/problem?id=1401 题意:计算N!的末尾0的个数 思路:算数基本定理 有0,分解为2*5,寻找2*5的对数,2的因子个数大于5,转化为寻找因子5的个数. ...

  9. [LightOJ 1341] Aladdin and the Flying Carpet (算数基本定理(唯一分解定理))

    题目链接: https://vjudge.net/problem/LightOJ-1341 题目描述: 问有几种边长为整数的矩形面积等于a,且矩形的短边不小于b 算数基本定理的知识点:https:// ...

随机推荐

  1. Flask的环境配置

      Flask django是大而全,提供所有常用的功能 flask是小而精,只提供核心功能 环境配置 为了防止 django和 flask环境相互冲突,可以使用 虚拟环境分割开 pip instal ...

  2. 3.2 Dependencies of the Projects in the Solution 解决方案中项目间的依赖项

    3.2 Dependencies of the Projects in the Solution 解决方案中项目间的依赖项 The diagram below shows the essential ...

  3. 【数据结构与算法Python版学习笔记】树——二叉查找树 Binary Search Tree

    二叉搜索树,它是映射的另一种实现 映射抽象数据类型前面两种实现,它们分别是列表二分搜索和散列表. 操作 Map()新建一个空的映射. put(key, val)往映射中加入一个新的键-值对.如果键已经 ...

  4. Java RMI学习与解读(一)

    Java RMI学习与解读(一) 写在前面 本文记录在心情美丽的一个晚上. 嗯.就是心情很美丽. 那为什么晚上还要学习呢? emm... 卷... 卷起来. 全文基本都是根据su18师傅和其他师傅的文 ...

  5. Java:LinkedList类小记

    Java:LinkedList类小记 对 Java 中的 LinkedList类,做一个微不足道的小小小小记 概述 java.util.LinkedList 集合数据存储的结构是循环双向链表结构.方便 ...

  6. dwr简单应用及一个反向ajax消息推送

    由于项目中最近需要用到dwr实现一些功能,因此在网上和dwr官网上找了一些资料进行学习.在此记录一下.(此处实现简单的dwr应用和dwr消息反向推送) 一.引入dwr的包 <dependency ...

  7. Go语言核心36讲(Go语言进阶技术九)--学习笔记

    15 | 关于指针的有限操作 在前面的文章中,我们已经提到过很多次"指针"了,你应该已经比较熟悉了.不过,我们那时大多指的是指针类型及其对应的指针值,今天我们讲的则是更为深入的内容 ...

  8. 多线程--vthread

    vthread中包含两个类: vthread.vthread.pool vthread.vthread.thread 其中class pool的原型如下: class pool(builtins.ob ...

  9. si macro macro

    获取 buf 里的 symbol cbuf = BufListCount() msg(cbuf) ibuf = 0 while (ibuf < cbuf) { hbuf = BufListIte ...

  10. PicGo插件

    前言:主要介绍PicGo插件,这里的图床上传软件是PicGo-Core,使用命令行操作 PicGo_Path:自己的PicGo安装路径,如果通过Typora一般安装位置位于 C:\Users\自己的主 ...