[atAGC054E]ZigZag Break
结论:(不妨假设$p_{1}<p_{n}$)$\{p_{i}\}$合法当且仅当$\exists 1\le i\le n-1$,使得$p_{1}\ge p_{i}$且$p_{i+1}\ge p_{n}$
充分性——
为了方便,在删除一个元素后,$i$和$n$也随之变化(指向原来的元素,若删除$p_{i}$或$p_{n}$会补充说明)
对$\{p_{1},p_{2},...,p_{i}\}$这个子问题不断删除(直至不能删除),显然最终必然是$p_{1}<p_{2}<...<p_{i}$(否则一定仍可以操作),同理可得后者也为$p_{i+1}>p_{i+2}>...>p_{n}$
如果$i\ge 3$或$i\le n-3$,不妨再删除$p_{i}$(并将$i$减小1)或删除$p_{i+1}$,重复此过程后即有$n-2\le i\le 2$,进而对$i$和$n$分类讨论,最终序列一定形如$\{2,1\},\{2,3,1\},\{1,3,2\}$或$\{2,1,4,3\}$,也即合法
必要性——
对$n$从小到大归纳,$n=2$时显然成立(取$i=1$即可)
考虑$n=k+1$时,反证若存在排列$\{p_{i}\}$合法但不存在$i$满足上述条件,假设其第一次删除的是$p_{i}$,由归纳假设删除后要存在$i$(满足上述条件),显然必然是$p_{1}\le p_{i-1}$且$p_{i+1}\ge p_{n}$
进而对$p_{i}$的值分类讨论,不难发现删除前也存在$i$,与假设矛盾,即得证
(类似地,在$p_{1}>p_{n}$时即要求$\exists 1\le i\le n-1$,使得$p_{1}\le p_{i}$且$p_{i+1}\le p_{n}$)
由于已经确定$p_{1}$,考虑枚举$p_{n}$(不妨仍假设$p_{1}<p_{n}$),并统计不合法的方案数——
将数分为三类,即$[1,p_{1}],(p_{1},p_{n}),[p_{n},n]$,那么即要求第三类数不接在第一类数的后面
初始序列中即有一个第一类数和第三类数(由于$n\ge 3$,这两个数一定不会相邻),并依次插入第2类、第1类和第3类数(注意顺序,并且要考虑初始的数),显然方案即
$$
(p_{n}-p_{1}-1)!\frac{(p_{n}-3)!}{(p_{n}-p_{1}-2)!}\frac{(n-p_{1}-2)!}{(p_{n}-p_{1}-2)!}=(p_{n}-p_{1}-1)\frac{(p_{n}-3)!(n-p_{1}-2)!}{(p_{n}-p_{1}-2)!}
$$
该式可以$o(1)$计算,但由于要枚举$p_{n}$,时间复杂度为$o(tn)$,无法通过
进一步的,枚举$k=p_{n}-p_{1}-2$,原式即
$$
(n-p_{1}-2)!\sum_{k=0}^{n-p_{1}-2}\frac{(k+1)(k+p_{1}-1)!}{k!}\\=(n-p_{1}-2)!\left(\sum_{k=0}^{n-p_{1}-2}\frac{(k+p_{1}-1)!}{k!}+\sum_{k=0}^{n-p_{1}-2}\frac{(k+p_{1}-1)!}{(k-1)!}\right)\\=(n-p_{1}-2)!\left((p_{1}-1)!\sum_{k=0}^{n-p_{1}-2}{k+p_{1}-1\choose p_{1}-1}+p_{1}!\sum_{k=0}^{n-p_{1}-2}{k+p_{1}-1\choose p_{1}}\right)\\=(n-p_{1}-2)!\left((p_{1}-1)!{n-2\choose p_{1}}+p_{1}!{n-2\choose p_{1}+1}\right)
$$
类似地,可以得到$p_{n}<p_{1}$的情况,答案为
$$
(p_{1}-3)!\left((n-p_{1})!{n-2\choose n-p_{1}+1}+(n-p_{1}+1)!{n-2\choose n-p_{1}+2}\right)
$$
时间复杂度为$o(t)$,可以通过

1 #include<bits/stdc++.h>
2 using namespace std;
3 #define N 1000005
4 #define mod 998244353
5 #define ll long long
6 int t,n,x,ans,fac[N],inv[N];
7 int C(int n,int m){
8 return (ll)fac[n]*inv[m]%mod*inv[n-m]%mod;
9 }
10 int main(){
11 fac[0]=inv[0]=inv[1]=1;
12 for(int i=1;i<N;i++)fac[i]=(ll)fac[i-1]*i%mod;
13 for(int i=2;i<N;i++)inv[i]=(ll)(mod-mod/i)*inv[mod%i]%mod;
14 for(int i=1;i<N;i++)inv[i]=(ll)inv[i-1]*inv[i]%mod;
15 scanf("%d",&t);
16 while (t--){
17 scanf("%d%d",&n,&x);
18 ans=fac[n-1];
19 if (x+2<=n){
20 int s=((ll)fac[x-1]*C(n-2,x)+(ll)fac[x]*C(n-2,x+1))%mod;
21 ans=(ans-(ll)fac[n-x-2]*s%mod+mod)%mod;
22 }
23 if (x>=3){
24 int s=((ll)fac[n-x]*C(n-2,n-x+1)+(ll)fac[n-x+1]*C(n-2,n-x+2))%mod;
25 ans=(ans-(ll)fac[x-3]*s%mod+mod)%mod;
26 }
27 printf("%d\n",ans);
28 }
29 return 0;
30 }
[atAGC054E]ZigZag Break的更多相关文章
- 【leetcode】ZigZag Conversion
题目简述 The string "PAYPALISHIRING" is written in a zigzag pattern on a given number of rows ...
- 6. ZigZag Conversion
题目: The string "PAYPALISHIRING" is written in a zigzag pattern on a given number of rows l ...
- leetcode problem 6 ZigZag Conversion
The string "PAYPALISHIRING" is written in a zigzag pattern on a given number of rows like ...
- Binary Tree Zigzag Level Order Traversal (LeetCode) 层序遍历二叉树
题目描述: Binary Tree Zigzag Level Order Traversal AC Rate: 399/1474 My Submissions Given a binary tree, ...
- [LeetCode] ZigZag Conversion [9]
称号 The string "PAYPALISHIRING" is written in a zigzag pattern on a given number of rows li ...
- 字符串按照Z旋转90度然后上下翻转的字形按行输出字符串--ZigZag Conversion
The string "PAYPALISHIRING" is written in a zigzag pattern on a given number of rows like ...
- [Swift]LeetCode6. Z字形变换 | ZigZag Conversion
The string "PAYPALISHIRING" is written in a zigzag pattern on a given number of rows like ...
- LeetCode: 103_Binary Tree Zigzag Level Order Traversal | 二叉树Zigzag层次遍历 | Medium
本题也属于层次遍历的变形,不同之处在于其遍历的方法是交替进行的,形成一个ZigZag的曲线形式,如下: 代码如下: struct TreeNode { int val; TreeNode* left; ...
- C++ leetcode::ZigZag Conversion
mmp,写完没保存,又得重新写.晚上写了简历,感觉身体被掏空,大学两年半所经历的事,一张A4纸都写不满,真是一事无成呢.这操蛋的生活到底想对我这个小猫咪做什么. 今后要做一个早起的好宝宝~晚起就诅咒自 ...
随机推荐
- Java秘诀!Java关系运算符介绍
运算符丰富是 Java 语言的主要特点之一,它提供的运算符数量之多,在高级语言中是少见的. Java 语言中的运算符除了具有优先级之外,还有结合性的特点.当一个表达式中出现多种运算符时,执行的先后顺序 ...
- Python | 一键生成九宫格图片
一键生成九宫格图片 首先我们准备几张图片: 将代码文件放在放置图片的地方,用软件打开: 点击运行,在当前目录下会生成一个文件夹: 打开新生成的文件夹: 打开对应图片的名称文件夹: 如果不想图片被分成9 ...
- 前段之BOM ----DOM
一.介绍 BOM(Browser Object Model)是指浏览器对象模型,它使 JavaScript 有能力与浏览器进行"对话". DOM (Document Object ...
- 【分享】 一款自用的Anki卡片模板:黄子涵单词卡片 v1
[分享] 一款自用的Anki卡片模板:黄子涵单词卡片 v1 说明 第一代的功能 主要有两部分组成:英文和含义,目前主要是为自己记忆Web前端一些常用的单词而服务 有美美哒背景图,本来想修改为随机背景图 ...
- PAT (Basic Level) Practice (中文)1022 D进制的A+B (20分)
1022 D进制的A+B (20分) 输入两个非负 10 进制整数 A 和 B ( ≤ 230 −1),输出 A+B 的 D (1<D≤10)进制数. 输入格式: 输入在一行中依次给出 3 ...
- UI BLOCK自定义枚举控件的宽度
三步: 1.修改PresentationStyle属性为Radio Box 2.修改NumberOfColumns属性为指定的宽度(显示字符的个数) 3.将PresentationStyle属性改回O ...
- scala基础篇 使用getter和setter方法而不使用public的情形
主要是基于2种情形 1) 提供读只取/只写入方法,不能随意读写 2)做赋值时变量控制,比如设定值的区间范围等 例子: object test{ def main(args: Array[String] ...
- 技术博客——微信小程序UI的设计与美化
技术博客--微信小程序UI的设计与美化 在alpha阶段的开发过后,我们的小程序也上线了.看到自己努力之后的成果大家都很开心,但对比已有的表情包小程序,我们的界面还有很大的提升空间,许多的界面都是各个 ...
- Noip模拟69 2021.10.5
考场拼命$yy$高精度结果没学好$for$循环痛失$50pts$,当场枯死 以后一定打对拍,要不考后会... T1 石子游戏 首先要知道典型的$NIM$博弈,就是说如果所有堆石子个数的异或和为$0$则 ...
- Sharding-JDBC基本使用,整合Springboot实现分库分表,读写分离
结合上一篇docker部署的mysql主从, 本篇主要讲解SpringBoot项目结合Sharding-JDBC如何实现分库分表.读写分离. 一.Sharding-JDBC介绍 1.这里引用官网上的介 ...