结论:(不妨假设$p_{1}<p_{n}$)$\{p_{i}\}$合法当且仅当$\exists 1\le i\le n-1$,使得$p_{1}\ge p_{i}$且$p_{i+1}\ge p_{n}$

充分性——

为了方便,在删除一个元素后,$i$和$n$也随之变化(指向原来的元素,若删除$p_{i}$或$p_{n}$会补充说明)

对$\{p_{1},p_{2},...,p_{i}\}$这个子问题不断删除(直至不能删除),显然最终必然是$p_{1}<p_{2}<...<p_{i}$(否则一定仍可以操作),同理可得后者也为$p_{i+1}>p_{i+2}>...>p_{n}$

如果$i\ge 3$或$i\le n-3$,不妨再删除$p_{i}$(并将$i$减小1)或删除$p_{i+1}$,重复此过程后即有$n-2\le i\le 2$,进而对$i$和$n$分类讨论,最终序列一定形如$\{2,1\},\{2,3,1\},\{1,3,2\}$或$\{2,1,4,3\}$,也即合法

必要性——

对$n$从小到大归纳,$n=2$时显然成立(取$i=1$即可)

考虑$n=k+1$时,反证若存在排列$\{p_{i}\}$合法但不存在$i$满足上述条件,假设其第一次删除的是$p_{i}$,由归纳假设删除后要存在$i$(满足上述条件),显然必然是$p_{1}\le p_{i-1}$且$p_{i+1}\ge p_{n}$

进而对$p_{i}$的值分类讨论,不难发现删除前也存在$i$,与假设矛盾,即得证

(类似地,在$p_{1}>p_{n}$时即要求$\exists 1\le i\le n-1$,使得$p_{1}\le p_{i}$且$p_{i+1}\le p_{n}$)

由于已经确定$p_{1}$,考虑枚举$p_{n}$(不妨仍假设$p_{1}<p_{n}$),并统计不合法的方案数——

将数分为三类,即$[1,p_{1}],(p_{1},p_{n}),[p_{n},n]$,那么即要求第三类数不接在第一类数的后面

初始序列中即有一个第一类数和第三类数(由于$n\ge 3$,这两个数一定不会相邻),并依次插入第2类、第1类和第3类数(注意顺序,并且要考虑初始的数),显然方案即
$$
(p_{n}-p_{1}-1)!\frac{(p_{n}-3)!}{(p_{n}-p_{1}-2)!}\frac{(n-p_{1}-2)!}{(p_{n}-p_{1}-2)!}=(p_{n}-p_{1}-1)\frac{(p_{n}-3)!(n-p_{1}-2)!}{(p_{n}-p_{1}-2)!}
$$

该式可以$o(1)$计算,但由于要枚举$p_{n}$,时间复杂度为$o(tn)$,无法通过

进一步的,枚举$k=p_{n}-p_{1}-2$​,原式即
$$
(n-p_{1}-2)!\sum_{k=0}^{n-p_{1}-2}\frac{(k+1)(k+p_{1}-1)!}{k!}\\=(n-p_{1}-2)!\left(\sum_{k=0}^{n-p_{1}-2}\frac{(k+p_{1}-1)!}{k!}+\sum_{k=0}^{n-p_{1}-2}\frac{(k+p_{1}-1)!}{(k-1)!}\right)\\=(n-p_{1}-2)!\left((p_{1}-1)!\sum_{k=0}^{n-p_{1}-2}{k+p_{1}-1\choose p_{1}-1}+p_{1}!\sum_{k=0}^{n-p_{1}-2}{k+p_{1}-1\choose p_{1}}\right)\\=(n-p_{1}-2)!\left((p_{1}-1)!{n-2\choose p_{1}}+p_{1}!{n-2\choose p_{1}+1}\right)
$$
类似地,可以得到$p_{n}<p_{1}$​的情况,答案为
$$
(p_{1}-3)!\left((n-p_{1})!{n-2\choose n-p_{1}+1}+(n-p_{1}+1)!{n-2\choose n-p_{1}+2}\right)
$$
时间复杂度为$o(t)$,可以通过

 1 #include<bits/stdc++.h>
2 using namespace std;
3 #define N 1000005
4 #define mod 998244353
5 #define ll long long
6 int t,n,x,ans,fac[N],inv[N];
7 int C(int n,int m){
8 return (ll)fac[n]*inv[m]%mod*inv[n-m]%mod;
9 }
10 int main(){
11 fac[0]=inv[0]=inv[1]=1;
12 for(int i=1;i<N;i++)fac[i]=(ll)fac[i-1]*i%mod;
13 for(int i=2;i<N;i++)inv[i]=(ll)(mod-mod/i)*inv[mod%i]%mod;
14 for(int i=1;i<N;i++)inv[i]=(ll)inv[i-1]*inv[i]%mod;
15 scanf("%d",&t);
16 while (t--){
17 scanf("%d%d",&n,&x);
18 ans=fac[n-1];
19 if (x+2<=n){
20 int s=((ll)fac[x-1]*C(n-2,x)+(ll)fac[x]*C(n-2,x+1))%mod;
21 ans=(ans-(ll)fac[n-x-2]*s%mod+mod)%mod;
22 }
23 if (x>=3){
24 int s=((ll)fac[n-x]*C(n-2,n-x+1)+(ll)fac[n-x+1]*C(n-2,n-x+2))%mod;
25 ans=(ans-(ll)fac[x-3]*s%mod+mod)%mod;
26 }
27 printf("%d\n",ans);
28 }
29 return 0;
30 }

[atAGC054E]ZigZag Break的更多相关文章

  1. 【leetcode】ZigZag Conversion

    题目简述 The string "PAYPALISHIRING" is written in a zigzag pattern on a given number of rows ...

  2. 6. ZigZag Conversion

    题目: The string "PAYPALISHIRING" is written in a zigzag pattern on a given number of rows l ...

  3. leetcode problem 6 ZigZag Conversion

    The string "PAYPALISHIRING" is written in a zigzag pattern on a given number of rows like ...

  4. Binary Tree Zigzag Level Order Traversal (LeetCode) 层序遍历二叉树

    题目描述: Binary Tree Zigzag Level Order Traversal AC Rate: 399/1474 My Submissions Given a binary tree, ...

  5. [LeetCode] ZigZag Conversion [9]

    称号 The string "PAYPALISHIRING" is written in a zigzag pattern on a given number of rows li ...

  6. 字符串按照Z旋转90度然后上下翻转的字形按行输出字符串--ZigZag Conversion

    The string "PAYPALISHIRING" is written in a zigzag pattern on a given number of rows like ...

  7. [Swift]LeetCode6. Z字形变换 | ZigZag Conversion

    The string "PAYPALISHIRING" is written in a zigzag pattern on a given number of rows like ...

  8. LeetCode: 103_Binary Tree Zigzag Level Order Traversal | 二叉树Zigzag层次遍历 | Medium

    本题也属于层次遍历的变形,不同之处在于其遍历的方法是交替进行的,形成一个ZigZag的曲线形式,如下: 代码如下: struct TreeNode { int val; TreeNode* left; ...

  9. C++ leetcode::ZigZag Conversion

    mmp,写完没保存,又得重新写.晚上写了简历,感觉身体被掏空,大学两年半所经历的事,一张A4纸都写不满,真是一事无成呢.这操蛋的生活到底想对我这个小猫咪做什么. 今后要做一个早起的好宝宝~晚起就诅咒自 ...

随机推荐

  1. 分布式全局ID与分布式事务

    1. 概述 老话说的好:人不可貌相,海水不可斗量.以貌取人是非常不好的,我们要平等的对待每一个人. 言归正传,今天我们来聊一下分布式全局 ID 与分布式事务. 2. 分布式全局ID 2.1 分布式数据 ...

  2. 【UE4 设计模式】状态模式 State Pattern

    概述 描述 允许一个对象在其内部状态改变时改变它的行为,对象看起来似乎修改了它的类. 其别名为状态对象(Objects for States),状态模式是一种对象行为型模式. 有限状态机(FSMs) ...

  3. 【c++ Prime 学习笔记】第11章 关联容器

    关联容器的元素按照关键字来保存和访问,而顺序容器的元素是按照在容器中的位置来保存和访问 关联容器支持高效的关键字查找和访问 2种关联容器: map中的元素是关键字-值对(key-value对),关键字 ...

  4. The WebSocket session [0] has been closed and no method (apart from close()) may be called on a closed session-ConcurrentHashMap使用在webSocket中采的坑

    一.问题由来 现在开发的一个项目中使用webSocket这个技术和Unity客户端程序进行联动操作,因为socket连接相对来说比http请求连接更加的快速,而且是 一个长链接,方便于这个项目进行其他 ...

  5. Java:异常小记

    Java:异常小记 对 Java 中的 异常 ,做一个微不足道的小小小小记 Error 和 Exception 相同点: Exception 和Error 都是继承了 Throwable 类,在 Ja ...

  6. Scrum Meeting 0609

    零.说明 日期:2021-6-9 任务:简要汇报两日内已完成任务,计划后两日完成任务 一.进度情况 组员 负责 两日内已完成的任务 后两日计划完成的任务 困难 qsy PM&前端 完成前端功能 ...

  7. OO面向对象第三次作业总结

    面向对象第三次作业总结 一.JML基础梳理及工具链 注释结构 行注释://@annotation 块注释:/*@ annotation @*/ 两种注释都是放在被注释部分上面. 常见表达式 原子表达式 ...

  8. USART 硬件流控

    流控的概念源于 RS232 这个标准,在 RS232 标准里面包含了串口.流控的定义.大家一定了解,RS232 中的"RS"是Recommend Standard 的缩写,即&qu ...

  9. Linux多线程编程实例解析

    Linux系统下的多线程遵循POSIX线程接口,称为 pthread.编写Linux下的多线程程序,需要使用头文件pthread.h,连接时需要使用库libpthread.a.顺便说一下,Linux ...

  10. 实验 1: SDN拓扑实践

    (图片和文档是自己写的,因为在CSDN也写了,所以会有自己的水印) 一.实验目的 能够使用源码安装Mininet: 能够使用Mininet的可视化工具生成拓扑: 能够使用Mininet的命令行生成特定 ...