The Luckiest number

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 1163    Accepted Submission(s): 363

Problem Description
Chinese people think of '8' as the lucky digit. Bob also likes digit '8'. Moreover, Bob has his own lucky number L. Now he wants to construct his luckiest number which is the minimum among all positive integers that are a multiple of L and consist of only digit '8'.
 
Input
The input consists of multiple test cases. Each test case contains exactly one line containing L(1 ≤ L ≤ 2,000,000,000).

The last test case is followed by a line containing a zero.
 
Output
For each test case, print a line containing the test case number( beginning with 1) followed by a integer which is the length of Bob's luckiest number. If Bob can't construct his luckiest number, print a zero.
 
Sample Input
8
11
16
0
 
Sample Output
Case 1: 1
Case 2: 2
Case 3: 0
思路:欧拉函数;
其实这题和hdu3307,基本一样,只不过这个推下。
设f[n],表示n位全是8的数,那么f[n]=10*f[n-1]+8,那么构造等比数列f[n]+(8/9)=10*(f[n-1]+(8/9));
那么f[n] = (8+8/9)*(10)^(n-1)-8/9;f[n] = (8/9)*((10)^n-1);那么就是要求最小的n使f[n]%L=0;
那么(8/9)*(10^n-1)=k*L;
8/gcd(8,L)*(10^n-1)=9*k*L/(gcd(8,L));
化简为8/gcd(8,L)*(10^n)%(9*L/(gcd(8,L)))=8/gcd(8,L);
8/gcd(8,L)与(9*L/(gcd(8,L))互质可以消去,的10^n%(9*L/(gcd(8,L)))=1;
那么用另模数为m,10^n%(m)=1;

m和10必定互质,否则无解。

于是根据欧拉定理,10^(Euler(m)) = 1(mod m) 。由于题目要求最小的解,解必然是Euler(m)的因子。

需要注意的是,对于10^x,由于m太大,直接快速幂相乘的时候会超long long

这题我开始用baby-step,超时了;

  1 #include<stdio.h>
2 #include<algorithm>
3 #include<iostream>
4 #include<string.h>
5 #include<queue>
6 #include<set>
7 #include<math.h>
8 #include<map>
9 using namespace std;
10 typedef long long LL;
11 pair<LL,LL>exgcd(LL n,LL m);
12 LL gcd(LL n,LL m);
13 LL quick(LL n,LL m,LL mod);
14 LL mul(LL n, LL m,LL p);
15 int slove(LL n);
16 LL phi(LL n);
17 bool prime[1000005];
18 int ans[1000005];
19 LL fen[1000005];
20 int main(void)
21 {
22 LL n;
23 int i,j;
24 int cn = 0;
25 for(i = 2; i <= 1000; i++)
26 {
27 if(!prime[i])
28 {
29 for(j = i; (i*j) <= 1000000; j++)
30 {
31 prime[i*j] = true;
32 }
33 }
34 }
35 for(i = 2; i <= 1000000; i++)
36 {
37 if(!prime[i])
38 {
39 ans[cn++] = i;
40 }
41 }
42 //printf("%d\n",cn);
43 int __ca = 0;
44 while(scanf("%lld",&n),n!=0)
45 {
46 LL gc = gcd(8,n);
47 n = 9*n/gc;
48 LL oula = phi(n);
49 LL x = gcd(n,10);//printf("%lld\n",n);
50 //printf("%lld\n",x);
51 printf("Case %d: ",++__ca);
52 if(x!=1)
53 {
54 printf("0\n");
55 }
56 else
57 {
58 int k = slove(oula);
59 //printf("%d\n",k);
60 for(i = 0;i < k;i++)
61 {
62 LL akk =quick(10,fen[i],n);
63 if(akk==1)
64 {
65 break;
66 }
67 }//printf("%d\n",10);
68 printf("%lld\n",fen[i]);
69 }
70 }
71 return 0;
72 }
73 int slove(LL n)
74 { int cn = 0;int i,j;
75 for(i = 1;i < sqrt(1.0*n);i++)
76 {
77 if(n%i==0)
78 {
79 if(n/i==i)
80 {
81 fen[cn++] = i;
82 }
83 else
84 {
85 fen[cn++] = i;
86 fen[cn++] = n/i;
87 }
88 }
89 }
90 sort(fen,fen+cn);
91 return cn;
92 }
93 LL phi(LL n)
94 {
95 int f = 0;
96 bool flag = false;
97 LL ask =n;
98 while(n>1)
99 {
100 while(n%ans[f]==0)
101 {
102 if(!flag)
103 {
104 flag = true;
105 ask/=ans[f];
106 ask*=ans[f]-1;
107 }
108 n/=ans[f];
109 }
110 f++;
111 flag = false;
112 if((LL)ans[f]*(LL)ans[f]>n)
113 {
114 break;
115 }
116 }
117 if(n > 1)
118 {
119 ask/=n;
120 ask*=(n-1);
121 }
122 return ask;
123 }
124 pair<LL,LL>exgcd(LL n,LL m)
125 {
126 if(m==0)
127 return make_pair(1,0);
128 else
129 {
130 pair<LL,LL>ak = exgcd(m,n%m);
131 return make_pair(ak.second,ak.first-(n/m)*ak.second);
132 }
133 }
134 LL gcd(LL n,LL m)
135 {
136 if(m==0)
137 return n;
138 else return gcd(m,n%m);
139 }
140 LL quick(LL n,LL m,LL mod)
141 {
142 LL ak = 1;
143 n %= mod;
144 while(m)
145 {
146 if(m&1)
147 ak =mul(ak,n,mod);
148 n = mul(n,n,mod);
149 m>>=1;
150 }
151 return ak;
152 }
153 LL mul(LL n, LL m,LL p)
154 {
155 n%=p;
156 m%=p;
157 LL ret=0;
158 while(m)
159 {
160 if(m&1)
161 {
162 ret=ret+n;
163 ret%=p;
164 }
165 m>>=1;
166 n<<=1;
167 n%=p;
168 }
169 return ret;
170 }

The Luckiest number(hdu2462)的更多相关文章

  1. 4.Single Number && Single Number (II)

    Single Number: 1. Given an array of integers, every element appears twice except for one. Find that ...

  2. PAT 甲级 1019 General Palindromic Number(20)(测试点分析)

    1019 General Palindromic Number(20 分) A number that will be the same when it is written forwards or ...

  3. Python3 数字Number(六)

    Python 数字数据类型用于存储数值. 数据类型是不允许改变的,这就意味着如果改变数字数据类型得值,将重新分配内存空间. 以下实例在变量赋值时 Number 对象将被创建: var1 = 1 var ...

  4. BZOJ 3000: Big Number (数学)

    题目: https://www.lydsy.com/JudgeOnline/problem.php?id=3000 题解: 首先n很大,O(n)跑不过,那么就要用一些高端 而且没听过 的东西——sti ...

  5. 【CF1017C】The Phone Number(构造)

    题意:要求构造一个1-n的排列,使得它的LIS+LDS最小 n<=1e5 思路:一个百度之星时候从LYY处听来的结论:1-n随机排列的LIS期望是根号级别的 考虑将LIS与LDS都构造成根号级别 ...

  6. Python学习笔记 (2.1)标准数据类型之Number(数字)

    Python3中,数字分为四种——int,float,bool,complex int(整型) 和数学上的整数表示没啥区别,没有大小限制(多棒啊,不用写整数高精了),可正可负.还可表示16进制,以 0 ...

  7. The Luckiest number(hdu 2462)

    给定一个数,判断是否存在一个全由8组成的数为这个数的倍数 若存在则输出这个数的长度,否则输出0 /* 个人感觉很神的一道题目. 如果有解的话,会有一个p满足:(10^x-1)/9*8=L*p => ...

  8. POJ 3696 The Luckiest number (欧拉函数,好题)

    该题没思路,参考了网上各种题解.... 注意到凡是那种11111..... 22222..... 33333.....之类的序列都可用这个式子来表示:k*(10^x-1)/9进而简化:8 * (10^ ...

  9. 第一届山东省ACM——Phone Number(java)

    Description We know that if a phone number A is another phone number B’s prefix, B is not able to be ...

随机推荐

  1. 完美png图片添加水印类

    完美png图片添加水印类 被添加水印图片和水印图片都可以是png,保证透明无色背景,可调节透明度 <?phpclass Imgshuiyin{ /* 缩略图相关常量定义 */ const THU ...

  2. Shell $()、${}、$[]、$(())

    目录 Shell中的 $().${}.$[].$(()) $().${} 替换 ${} 变量内容的替换.删除.取代 数组 $[].$(()) 运算符 Shell中的 $().${}.$[].$(()) ...

  3. day08 索引的创建与慢查询优化

    day08 索引的创建与慢查询优化 昨日内容回顾 视图 视图:将SQL语句查询结果实体化保存起来,方便下次查询使用. 视图里面的数据来源于原表,视图只有表结构 # 创建视图 create view 视 ...

  4. 最长公共子序列问题(LCS) 洛谷 P1439

    题目:P1439 [模板]最长公共子序列 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn) 关于LCS问题,可以通过离散化转换为LIS问题,于是就可以使用STL二分的方法O(nlogn ...

  5. STL全特化与偏特化

    在泛型编程中,常常会使用一些非完全泛型的类模板,这就是特化. 如何理解全特化呢?如上图所示,第一个template class是空间配置器的类模板,第二个就是一个全特化的template class. ...

  6. 理解各种不同含义的 new 和 delete

    new operator new操作符 operator new 操作符new placement new 定位new string *ps = new string("Memory Man ...

  7. ehcache详解

    Ehcache是现在最流行的纯Java开 源缓存框架,配置简单.结构清晰.功能强大,最初知道它,是从Hibernate的缓存开始的.网上中文的EhCache材料以简单介绍和配置方法居多, 如果你有这方 ...

  8. docker安装jumpserver

    注意MySQL的密码设置要有复杂度,否则jumpserver用不了 #先准备一台服务器安装MySQL和redis(注意官网版本要求) root@ubuntu:~# docker pull mysql: ...

  9. 一个简单的Extjs继承实现

    function extend(sub,sup){ //目地:实现只继承父类的原型对象 //1.用一个空函数据中转,目地进行中转 var F = new Function(); //2.实现空函数的的 ...

  10. Spring Boot发布war包流程

    1.修改web model的pom.xml <packaging>war</packaging> SpringBoot默认发布的都是jar,因此要修改默认的打包方式jar为wa ...