The Luckiest number

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 1163    Accepted Submission(s): 363

Problem Description
Chinese people think of '8' as the lucky digit. Bob also likes digit '8'. Moreover, Bob has his own lucky number L. Now he wants to construct his luckiest number which is the minimum among all positive integers that are a multiple of L and consist of only digit '8'.
 
Input
The input consists of multiple test cases. Each test case contains exactly one line containing L(1 ≤ L ≤ 2,000,000,000).

The last test case is followed by a line containing a zero.
 
Output
For each test case, print a line containing the test case number( beginning with 1) followed by a integer which is the length of Bob's luckiest number. If Bob can't construct his luckiest number, print a zero.
 
Sample Input
8
11
16
0
 
Sample Output
Case 1: 1
Case 2: 2
Case 3: 0
思路:欧拉函数;
其实这题和hdu3307,基本一样,只不过这个推下。
设f[n],表示n位全是8的数,那么f[n]=10*f[n-1]+8,那么构造等比数列f[n]+(8/9)=10*(f[n-1]+(8/9));
那么f[n] = (8+8/9)*(10)^(n-1)-8/9;f[n] = (8/9)*((10)^n-1);那么就是要求最小的n使f[n]%L=0;
那么(8/9)*(10^n-1)=k*L;
8/gcd(8,L)*(10^n-1)=9*k*L/(gcd(8,L));
化简为8/gcd(8,L)*(10^n)%(9*L/(gcd(8,L)))=8/gcd(8,L);
8/gcd(8,L)与(9*L/(gcd(8,L))互质可以消去,的10^n%(9*L/(gcd(8,L)))=1;
那么用另模数为m,10^n%(m)=1;

m和10必定互质,否则无解。

于是根据欧拉定理,10^(Euler(m)) = 1(mod m) 。由于题目要求最小的解,解必然是Euler(m)的因子。

需要注意的是,对于10^x,由于m太大,直接快速幂相乘的时候会超long long

这题我开始用baby-step,超时了;

  1 #include<stdio.h>
2 #include<algorithm>
3 #include<iostream>
4 #include<string.h>
5 #include<queue>
6 #include<set>
7 #include<math.h>
8 #include<map>
9 using namespace std;
10 typedef long long LL;
11 pair<LL,LL>exgcd(LL n,LL m);
12 LL gcd(LL n,LL m);
13 LL quick(LL n,LL m,LL mod);
14 LL mul(LL n, LL m,LL p);
15 int slove(LL n);
16 LL phi(LL n);
17 bool prime[1000005];
18 int ans[1000005];
19 LL fen[1000005];
20 int main(void)
21 {
22 LL n;
23 int i,j;
24 int cn = 0;
25 for(i = 2; i <= 1000; i++)
26 {
27 if(!prime[i])
28 {
29 for(j = i; (i*j) <= 1000000; j++)
30 {
31 prime[i*j] = true;
32 }
33 }
34 }
35 for(i = 2; i <= 1000000; i++)
36 {
37 if(!prime[i])
38 {
39 ans[cn++] = i;
40 }
41 }
42 //printf("%d\n",cn);
43 int __ca = 0;
44 while(scanf("%lld",&n),n!=0)
45 {
46 LL gc = gcd(8,n);
47 n = 9*n/gc;
48 LL oula = phi(n);
49 LL x = gcd(n,10);//printf("%lld\n",n);
50 //printf("%lld\n",x);
51 printf("Case %d: ",++__ca);
52 if(x!=1)
53 {
54 printf("0\n");
55 }
56 else
57 {
58 int k = slove(oula);
59 //printf("%d\n",k);
60 for(i = 0;i < k;i++)
61 {
62 LL akk =quick(10,fen[i],n);
63 if(akk==1)
64 {
65 break;
66 }
67 }//printf("%d\n",10);
68 printf("%lld\n",fen[i]);
69 }
70 }
71 return 0;
72 }
73 int slove(LL n)
74 { int cn = 0;int i,j;
75 for(i = 1;i < sqrt(1.0*n);i++)
76 {
77 if(n%i==0)
78 {
79 if(n/i==i)
80 {
81 fen[cn++] = i;
82 }
83 else
84 {
85 fen[cn++] = i;
86 fen[cn++] = n/i;
87 }
88 }
89 }
90 sort(fen,fen+cn);
91 return cn;
92 }
93 LL phi(LL n)
94 {
95 int f = 0;
96 bool flag = false;
97 LL ask =n;
98 while(n>1)
99 {
100 while(n%ans[f]==0)
101 {
102 if(!flag)
103 {
104 flag = true;
105 ask/=ans[f];
106 ask*=ans[f]-1;
107 }
108 n/=ans[f];
109 }
110 f++;
111 flag = false;
112 if((LL)ans[f]*(LL)ans[f]>n)
113 {
114 break;
115 }
116 }
117 if(n > 1)
118 {
119 ask/=n;
120 ask*=(n-1);
121 }
122 return ask;
123 }
124 pair<LL,LL>exgcd(LL n,LL m)
125 {
126 if(m==0)
127 return make_pair(1,0);
128 else
129 {
130 pair<LL,LL>ak = exgcd(m,n%m);
131 return make_pair(ak.second,ak.first-(n/m)*ak.second);
132 }
133 }
134 LL gcd(LL n,LL m)
135 {
136 if(m==0)
137 return n;
138 else return gcd(m,n%m);
139 }
140 LL quick(LL n,LL m,LL mod)
141 {
142 LL ak = 1;
143 n %= mod;
144 while(m)
145 {
146 if(m&1)
147 ak =mul(ak,n,mod);
148 n = mul(n,n,mod);
149 m>>=1;
150 }
151 return ak;
152 }
153 LL mul(LL n, LL m,LL p)
154 {
155 n%=p;
156 m%=p;
157 LL ret=0;
158 while(m)
159 {
160 if(m&1)
161 {
162 ret=ret+n;
163 ret%=p;
164 }
165 m>>=1;
166 n<<=1;
167 n%=p;
168 }
169 return ret;
170 }

The Luckiest number(hdu2462)的更多相关文章

  1. 4.Single Number && Single Number (II)

    Single Number: 1. Given an array of integers, every element appears twice except for one. Find that ...

  2. PAT 甲级 1019 General Palindromic Number(20)(测试点分析)

    1019 General Palindromic Number(20 分) A number that will be the same when it is written forwards or ...

  3. Python3 数字Number(六)

    Python 数字数据类型用于存储数值. 数据类型是不允许改变的,这就意味着如果改变数字数据类型得值,将重新分配内存空间. 以下实例在变量赋值时 Number 对象将被创建: var1 = 1 var ...

  4. BZOJ 3000: Big Number (数学)

    题目: https://www.lydsy.com/JudgeOnline/problem.php?id=3000 题解: 首先n很大,O(n)跑不过,那么就要用一些高端 而且没听过 的东西——sti ...

  5. 【CF1017C】The Phone Number(构造)

    题意:要求构造一个1-n的排列,使得它的LIS+LDS最小 n<=1e5 思路:一个百度之星时候从LYY处听来的结论:1-n随机排列的LIS期望是根号级别的 考虑将LIS与LDS都构造成根号级别 ...

  6. Python学习笔记 (2.1)标准数据类型之Number(数字)

    Python3中,数字分为四种——int,float,bool,complex int(整型) 和数学上的整数表示没啥区别,没有大小限制(多棒啊,不用写整数高精了),可正可负.还可表示16进制,以 0 ...

  7. The Luckiest number(hdu 2462)

    给定一个数,判断是否存在一个全由8组成的数为这个数的倍数 若存在则输出这个数的长度,否则输出0 /* 个人感觉很神的一道题目. 如果有解的话,会有一个p满足:(10^x-1)/9*8=L*p => ...

  8. POJ 3696 The Luckiest number (欧拉函数,好题)

    该题没思路,参考了网上各种题解.... 注意到凡是那种11111..... 22222..... 33333.....之类的序列都可用这个式子来表示:k*(10^x-1)/9进而简化:8 * (10^ ...

  9. 第一届山东省ACM——Phone Number(java)

    Description We know that if a phone number A is another phone number B’s prefix, B is not able to be ...

随机推荐

  1. 14. GLIBCXX_3.4.9' not found - 解决办法

    在Linux中安装交叉编译器arm-linux-gcc 4.4.3,然后编译mini2440内核出错: /usr/lib/libstdc++.so.6: version GLIBCXX_3.4.9' ...

  2. HBase【操作Java api】

    一.导入依赖 创建模块,导入以下依赖,maven默认编译版本是1.5,用1.8编译. pom.xml <dependencies> <dependency> <group ...

  3. 『学了就忘』Linux启动引导与修复 — 69、启动引导程序(grub)

    目录 1.启动引导程序(Boot Loader)简介 2.启动引导程序grub的作用 3.启动引导程序grub的位置 4./grub目录中其他的文件简单介绍 提示: 简单地说,Boot Loader就 ...

  4. [JAVA]动态代理与AOP的千丝万缕

    动态代理与AOP的联系 别的不说,直接上图 首先是AOP切面编程 什么是切面?(自己心里想想就ok)所以所谓的切面编程,你也就懂得大体了,只是这个被切的是个程序而已 那么AOP与动态代理有什么关系呢? ...

  5. 【leetcode】222. Count Complete Tree Nodes(完全二叉树)

    Given the root of a complete binary tree, return the number of the nodes in the tree. According to W ...

  6. 【leetcode】208. Implement Trie (Prefix Tree 字典树)

    A trie (pronounced as "try") or prefix tree is a tree data structure used to efficiently s ...

  7. Linux基础命令---mget获取ftp文件

    mget 使用lftp登录mftp服务器之后,可以使用mget指令从服务器获取文件.mget指令可以使用通配符,而get指令则不可以.   1.语法       mget [-E]  [-a]  [- ...

  8. Linux基础命令---ftp

    ftp ftp指令可以用来登录远程ftp服务器. 此命令的适用范围:RedHat.RHEL.Ubuntu.CentOS.SUSE.openSUSE.Fedora.   1.语法       ftp [ ...

  9. 监控Linux服务器网站状态的SHELL脚本

    1,监控httpd状态码的shell脚本代码. #!/bin/sh #site: www.jquerycn.cn # website[0]=www.jquerycn.cn/chuzu/' #网站1 m ...

  10. Oracle带输入输出参数的存储过程

    (一)使用输入参数 需求:在emp_copy中添加一条记录,empno为已有empno的最大值+1,ename不能为空且长度必须大于0,deptno为60. 创建存储过程: create or rep ...